Development of Upstream Data-Input Models to Estimate Downstream Peak Flow in Two Mediterranean River Basins of Chile
Roberto Pizarro-Tapia, Rodrigo Valdés-Pineda, Claudio Olivares, Patricio A. González. 2014.. Open Journal of Modern Hydrology, 2014, 4, 132-143. Published Online October 2014 in SciRes.
Accurate flood prediction is an important tool for risk management and hydraulic works design on a watershed scale. The objective of this study was to calibrate and validate 24 linear and non-linear regression models, using only upstream data to estimate real-time downstream flooding. Four critical downstream estimation points in the Mataquito and Maule river basins located in central Chile were selected to estimate peak flows using data from one, two, or three upstream stations. More than one thousand paper-based storm hydrographs were manually analyzed for rainfall events that occurred between 1999 and 2006, in order to determine the best models for predicting downstream peak flow. The Peak Flow Index (IQP) (defined as the quotient between upstream and downstream data) and the Transit Times (TT) between upstream and downstream points were also obtained and analyzed for each river basin. The Coefficients of Determination (R2), the Standard Error of the Estimate (SEE), and the Bland-Altman test (ACBA) were used to calibrate and validate the best selected model at each basin. Despite the high variability observed in peak flow data, the developed models were able to accurately estimate downstream peak flows using only upstream flow data.