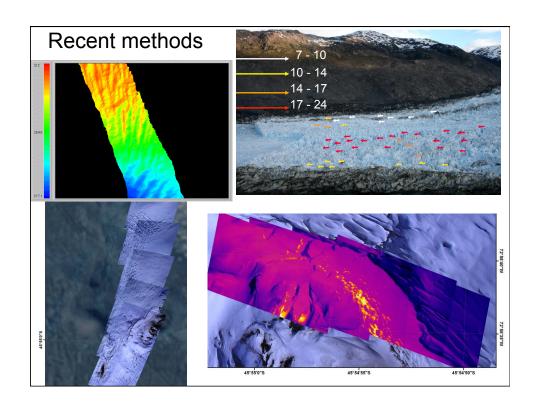
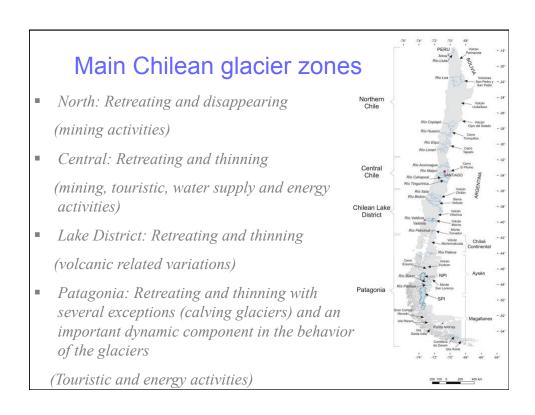
Recent studies in Chile

Key questions


- Are the observed climatic changes an expression of the natural variability and/or a response to human influence?
- How are the glaciers responding to those climatic changes?
- Could be possible to predict/mitigate/manage the consequences of the glacier responses?
- Are we providing necessary data for decision makers?


Main glaciological research problems in Chile

- ■Scarce and poor availability of field data
- ■Lack of several accurate glacier parameters
- ■Limited budgets for software/hardware/data/ training/monitoring
- ■Inefficient and bureaucratic data distribution among national institutions
- Reduced collaboration between scientists and institutions
- ■Lack of common aims and policy
- ■Few systematic monitoring programs

State of art

- Glacier inventory
 - A few thousands inventoried glaciers
 - Total inventoried area: near 20000 km²
 - Estimated non inventoried area: 4000 km² mainly in Patagonia
- Frontal and volumetric changes
 - More than 150 studied glaciers. The great majority are retreating and thinning. Only three glaciers advanced in recent years, all in Patagonia
- Applied geophysics
 - LIDAR of more than 30 glaciers.
 - RES (ground and airborne) of more than 50 glaciers
 - Sonar/calving studies of more than 5 glaciers
 - Remote sensing, GPS, Fixed cameras, AWS's, ice coring, modelling, runoff.

Southern Patagonian Icefield

- 350 km N-S & 80-15 km E-W, 48 main basins
- 40% are tidewater glaciers, all retreating but three (Pío XI, Moreno, Trinidad)
- Generalized glacier front retreats and area changes (>800 km² 1945-2010)
- Several glaciers are retreating at very strong rates because they are calving into deep fjords and lakes (Jorge Montt, O'Higgins, Upsala)
- Warming at 850 hPa has been 0.5 °C over the 40 years, resulting in:
 - i. shifted from snow to rain ~5% of the precipitation, the total of which has changed little
 - ii. increased annual melt in the ablation areas by ~0.5 m w.e. (Rasmussen et al, 2007)

Chilean contribution to sea level rise 1975-2005:

Chilean glaciers	Area km²	%	Contribution to sea level rise mm a ⁻¹	%	Sources
Patagonian icefields			(0.032 ± 0.013)		Rivera et al 2002
	13612	2.6	0.041 ± 0.016	5.1	Rivera et al, 2007
Rest of Chile			(0.009 ± 0.002)		Rivera et al 2002
	6547	1.25	0.021 ± 0.008	2.6	Rivera et al, 2007
Global glacier area	525000	100	0.8 ± 0.2	100	IPCC y UNEP 2007

Chilean glaciers contribution to sea level rise is exceeding higher estimated rates

Conclusions

- ■Chilean glaciers are severely affected by ongoing global climate change. However, Chilean regional characteristics of temperature and precipitation changes is not necessarily as strong as global rates.
- ■Most of Chilean glaciers have experienced negative mass balances, frontal retreats and high thinning rates, in response to climatic changes.
- ■Not all glaciers are good indicators of climatic changes, since there are several "anomalies" or dynamic responses, especially in Patagonia and in some volcanoes
- ■The strong glacier retreat and thinning seems to be accelerating in recent decades
- ■There is a need of systematic monitoring programs, especially in Patagonia.

