

UNIVERSIDAD DE TALCA FACULTAD DE CIENCIAS FORESTALES ESCUELA DE INGENIERÍA FORESTAL

ANÁLISIS DE LOS COEFICIENTES DE ESCORRENTÍA INSTANTÁNEOS, CALCULADOS PARA LA CUENCA DEL TUTUVÉN, REGIÓN DEL MAULE, CHILE

MARCELA CAROLINA TAPIA CORNEJO

Memoria para optar al título de: INGENIERO FORESTAL

Profesor guía: Dr. Ing. ROBERTO PIZARRO TAPIA

TALCA - CHILE 2003.

-		
Memoria apoyada por el Programa del Maule- Universidad de Talca.	a de Financiamiento de Memorias Gobierno Re	gional
Memoria apoyada por el Programa del Maule- Universidad de Talca.	a de Financiamiento de Memorias Gobierno Re	gional
Memoria apoyada por el Programa del Maule- Universidad de Talca.	a de Financiamiento de Memorias Gobierno Re	gional

UNIVERSIDAD DE TALCA

FACULTAD DE CIENCIAS FORESTALES. ESCUELA DE INGENIERÍA FORESTAL

La Srta. Marcela Carolina Tapia Cornejo ha realizado la Memoria: "Análisis de los coeficientes de escorrentía instantáneos, para la cuenca del Tutuvén, Región del Maule, Chile", como uno de los requisitos para optar al Título de Ingeniero Forestal. El Profesor Guía es el Sr. Roberto Pizarro Tapia.

La comisión de Calificación constituida por los profesores Sr. Roberto Pizarro Tapia y el Sr. Carlos Mena Frau, han evaluado con nota 6,7 (seis, siete).

CRISTIAN LOPEZ MONTECINOS DIRECTOR ESCUELA DE INGENIERIA FORESTAL

Talca, Julio de 2003.

DEDICATORIA

AGRADECIMIENTOS

Quisiera agradecer a todas aquellas personas que entregaron su apoyo, tanto técnico como humano, en la realización de esta memoria, especialmente a:

El profesor guía Dr. Ingeniero Forestal Roberto Pizarro Tapia, que gracias a su orientación y apoyo, logré llevar a cabo esta investigación académica.

A Paula y Gabriela, por el apoyo y amistad incondicional, durante los años de estudiante en la Universidad, como también, durante el desarrollo del presente estudio.

A mis amigos y compañeros de Kame house y Chicken house, por los inolvidables momentos vividos los últimos años de mi carrera.

Finalmente, agradezco a mi abuela, tíos y en especial a mi madre, por el apoyo, comprensión y amor brindado, en esta importante etapa de mi vida.

ÍNDICE

		Página
1.	Introducción	1
2.	Objetivos	3
	2.1. Objetivo General	3
	2.2. Objetivos Específicos	3
3.	Antecedentes generales	4
4.	Revisión Bibliográfica	6
	4.1. El Ciclo Hidrológico	6
	4.2. Escorrentía	Q
	4.3. Coeficiente de escorrentía	10
	4.4. Método del Número de Curva.	10
	4.5. Influencia de la vegetación sobre la precipitación	17
	4.6. Influencia de la vegetación sobre la infiltración	17
	4.7. Influencia de la vegetación sobre la escorrentía	10
	4.8. Influencia de la vegetación sobre el suelo	. 20
5.	Metodología	21
	5.1. Marco General	21
	5.2. Materiales y Equipos	21
	5.3. Fases metodológicas	22
	5.3.1. Revisión Bibliográfica	22
	5.3.2. Obtención de información requerida	22
	5.3.3. Caracterización y digitalización de la cuenca	23
	5.3.4. Selección de las tormentas	25

	5.3.5. Determinación de situaciones de vegetación	26
	5.3.6. Cálculo del Número de Curva	27
	5.3.7. Determinación de la precipitación efectiva	30
	5.3.8. Cálculo del coeficiente de escorrentía	30
	5.3.9. Cálculo del coeficiente de escorrentía en función del Manual de	
	Carreteras	31
	5.3.10. Análisis Estadístico	32
	5.3.10.1. Análisis de Regresión	32
	5.3.10.1.1. Supuestos de Regresión	32
	5.3.10.1.2. Medidas de bondad de ajuste del modelo	36
	5.3.11. Análisis y discusión de resultados	37
	5.3.12. Conclusiones y Recomendaciones	37
6.	Presentación de resultados	38
	6.1. Caracterización y digitalización de la cuenca	38
	6.2. Selección de las tormentas	40
	6.3. Situaciones de vegetación	40
	6.4. Número de Curva	42
	6.5. Coeficiente de escorrentía	45
	6.6. Coeficientes de escorrentía en función del Manual de Carreteras	48
	6.7. Resultados y análisis estadísticos para la estimación del coeficiente	
	de escorrentía	49
	6.8. Medidas de bondad de ajuste	61
7.	Análisis de Resultados	63
	7.1. Selección de las tormentas	63
	7.2. Situaciones de vegetación	64
	72.38	55
	7.4. Coeficientes de escorrentía	56
	7.4.1. Tormentas de alta intensidad	66

	7.4.2. Tormentas de baja intensidad	69
	7.5. Coeficiente de escorrentía en función del Manual de Carreteras	71
	7.6. Modelo de Regresión lineal	73
8.	Conclusiones y Recomendaciones	74
	8.1. Conclusiones	74
	8.2. Recomendaciones	75
9.	Bibliografía	77

ÍNDICE DE TABLAS

	Página
TABLA Nº 1: Cálculo del coeficiente de escorrentía, a través del Manual de	
Carreteras	12
TABLA N° 2: Condiciones precedentes de humedad	28
TABLA Nº 3: Conversión del Número de Curva de a Condición II a las	
Condiciones I y III	29
TABLA Nº 4: Reglas de decisión de la prueba Durbin y Watson	35
TABLA Nº 5: Cubiertas vegetales y Números de Curva determinados según	
Tabla de Ponce (1989), para la vegetación actual (VA)	41
TABLA Nº 6: Número de Curva para el Segundo escenario VPCII (vegetación	
Plena, condición II	42
TABLA Nº 7: Número de Curva para el Quinto escenario VACII (vegetación	
Actual, condición II	43
TABLA Nº 8: Número de Curva para el Octavo escenario VRCII (vegetación	
Rala, condición II	44
TABLA Nº 9: Resumen de los Números de Curva y el valor de S para los 9	
escenarios	44
TABLA Nº 10: Tabla sinóptica de los coeficientes de escorrentía para intervalos	
de 1 hora	45
TABLA Nº 11: Tabla sinóptica de los coeficientes de escorrentía para intervalos	
de 2 horas	46
TABLA Nº 12: Tabla sinóptica de los coeficientes de escorrentía para intervalos	
de 4 horas	46
TABLA Nº 13: Coeficiente de escorrentía para la tormenta Nº13 (alta intensidad)	47
TABLA Nº 14: Características para la cuenca del Tutuvén según Manual de	
Carreteras	48
TABLA Nº 15: Coeficientes de escorrentía máximos para las 30 tormentas	49
TABLA N° 16: Análisis de regresión para el Segundo escenario	50

TABLA Nº 17: Análisis de varianza para el Segundo escenario	50
TABLA Nº 18: Análisis de regresión para el Tercer escenario	51
TABLA Nº 19: Análisis de varianza para el Tercer escenario	51
TABLA Nº 20: Análisis de regresión para el Cuarto escenario	53
TABLA Nº 21: Análisis de varianza para el Cuarto escenario	53
TABLA N° 22: Análisis de regresión para el Quinto escenario	54
TABLA N° 23: Análisis de varianza para el Quinto escenario	54
TABLA N° 24: Análisis de regresión para el Sexto escenario	55
TABLA N° 25: Análisis de varianza para el Sexto escenario	56
TABLA N° 26: Análisis de regresión para el Séptimo escenario	57
TABLA N° 27: Análisis de varianza para el Séptimo escenario	57
TABLA N° 28: Análisis de regresión para el Octavo escenario	58
TABLA N° 29: Análisis de varianza para el Octavo escenario	58
TABLA Nº 30: Análisis de regresión para el Noveno escenario	60
TABLA N° 31: Análisis de varianza para el Noveno escenario	60
TABLA N° 32: Modelos ajustados para cada escenario planteado	61

ÍNDICE DE FIGURAS

	Página
Figura N°1: Mapa de la Séptima Región del Maule	4
Figura N°2: Pluviograma y Pluviograma neto para una tormenta	13
Figura N°3: Monograma para determinar la escorrentía en función de la	
precipitación y del Número de Curva	15
Figura N°4: Probabilidad normal de los residuos	33
Figura N°5: Gráfico de dispersión de los residuos con presencia de	
heterocedasticidad	34
Figura N°6: Gráfico hipotético de autocorrelación de residuos (no hay presencia	
de correlación serial)	36
Figura N°7: Detalle de la base de datos de grupos de suelo generada para la	
cuenca del Tutuvén por el tratamiento digital en el Software Arc View	7
3.1	38
Figura N°8: Detalle de la base de datos de la intersección entre grupos de suelo	
y la vegetación, para la cuenca del Tutuvén	39
Figura N°9: Escorrentías, v/s precipitación y número de curva para la tormenta	
N° 5 en los 9 escenarios planteados	66
Figura N°10: Escorrentías, v/s precipitación y número de curva para la tormenta	
Nº 13 en los 9 escenarios planteados	66
Figura N°11: Coeficiente de escorrentía para los 9 escenarios planteados	67
Figura N°12: Coeficiente de escorrentía para los 9 escenarios planteados	68
Figura N°13: Coeficiente de escorrentía para los 5 escenarios	69

APÉNDICES

	Página
APÉNDICE I : Caracterización de los suelos y clasificación según Método del	
Número de Curva	81
APÉNDICE II : Número de Curva ponderado (NCP)	84
APÉNDICE III : Máxima infiltración	86
APÉNDICE IV : Precipitación efectiva	88
APÉNDICE V : Coeficiente de escorrentía	91
APÉNDICE VI : Pendiente media de Mociornita	120
APÉNDICE VII: Análisis de regresión y supuestos para el Segundo escenario	
(VPCII)	122
APÉNDICE VIII: Análisis de regresión y supuestos para el Tercer escenario	
(VPCIII)	125
APÉNDICE IX: Análisis de regresión y supuestos para el Cuarto escenario	
(VACI)	128
APÉNDICE X: Análisis de regresión y supuestos para el Quinto escenario	
(VACII)	131
APÉNDICE XI : Análisis de regresión y supuestos para el Sexto escenario	101
(VACIII)	134
APÉNDICE XII: Análisis de regresión y supuestos para el Séptimo escenario	10 (
(VRCI)	137
APÉNDICE XIII: Análisis de regresión y supuestos para el Octavo escenario	13,
(VRCII)	140
APÉNDICE XIV: Análisis de regresión y supuestos para el Noveno escenario	140
(VRCIII)	143

ANEXOS

	Página
ANEXO I : Tablas de Ponce (1989)	147

RESUMEN

Con el objetivo de ampliar el conocimiento de las escorrentías superficiales, en el ciclo hidrológico y en cuencas donde la información pluviográfica es escasa, se determinó el coeficiente de escorrentía instantáneo en la cuenca del Tutuvén, VII Región de Chile.

Para ello, se aplicó el Método del número de curva, recopilando registros de intensidades de precipitación horaria de 30 tormentas (15 de alta intensidad y 15 de baja intensidad); además, se plantearon diversas situaciones de vegetación y condiciones de humedad del suelo, de manera de demostrar la influencia de cada uno de estos factores.

Por otra parte, se generó una función de regresión (C = f(P)), para estimar el coeficiente de escorrentía (C) a través de montos de precipitación en 24 horas, los cuales se obtuvieron por medio de los registros de las bandas pluviográficas.

Es así como, los coeficientes de escorrentía instantáneos que indicaron los mayores valores, fueron para una vegetación escasa y con una condición de humedad alta. Por el contrario, los valores más bajos fueron para las situaciones con bastante vegetación y condiciones secas de humedad del suelo. Éstos a su vez demostraron que la intensidad de precipitación horaria, es el factor más influyente en sus variaciones.

Por último, los modelos adecuados fueron comprobados por medio del coeficiente de determinación (R2) y el error estándar de estimación (EEE), los que presentaron buenos valores de ajuste.

SUMMARY

Runoff coefficient is studied through the curve number in Tutuvén basin, Maule Region of Chile.

For this objective, the curve numbers were defined for three conditions. Actual vegetation, with a cover of 50 %; full vegetation and scarce vegetation.

In addition, 30 storms were obtained from pluviograph information and analyzed step by step, i.e., from hour in hour.

Results show the most highest values, are obtained whit scarce vegetation and high humidity conditions, but all of then with high rainfall values storms. This situation shows that the most important factor in runoff coefficient is rainfall intensity.

Finally, regression functions were generated to estimate runoff coefficient since daily rainfall data. So eight functions were obtained with good quality of fit.

1. INTRODUCCIÓN

El agua es un recurso fundamental utilizado en las principales fuentes productivas, como por ejemplo, el sector silvoagropecuario y el eléctrico. Ésto provoca una demanda social de conocimiento de los procesos hidrológicos, además de una demanda de control y mantenimiento de la calidad del agua en las cuencas, para poder reutilizarla y evitar el deterioro ambiental.

Por otra parte, la cubierta vegetal cumple un rol elemental en cuanto a la disponibilidad de agua y caudales generados por las precipitaciones. Así, los efectos que provoca la vegetación ante cualquiera de las formas de agua presentes, son diversos, principalmente por los cambios producidos en la modificación de su cobertura. Una reducción de la cubierta de bosques, podría generar aumentos en la escorrentía y procesos erosivos, ya que la vegetación actúa como un factor interceptor y regulador de los procesos antes mencionados.

Debido a lo importante que es el agua y la vegetación para la vida natural y social, es necesario mantener un control métrico y estudiar el comportamiento de estos recursos, que son la base de la vida y de la correspondiente generación de otros recursos naturales.

Por otra parte, en las cuencas de Chile existen pocas estaciones pluviométricas y fluviométricas, que permitan mantener un control de los recursos hídricos, lo que conlleva a una escasa información acerca de éstas. Se hace indispensable entonces, el establecimiento de métodos que ayuden a la obtención de la información, como también determinar la influencia de la vegetación como elemento regulador. Uno de los métodos es el del Número de Curva, el cual permite obtener información acerca de los coeficientes de escorrentía generados en una cuenca, determinando así, la relación existente entre las precipitaciones caídas y las que realmente generan escorrentía superficial. Esta información intenta a su vez ser un elemento fundamental para la ejecución de obras civiles y forestales.

La propuesta de este proyecto de memoria, se basa en el uso del método del Número de Curva, con el fin de aportar al conocimiento de la influencia de la vegetación en el comportamiento de los coeficientes de escorrentía instantáneos en una cuenca de la VII Región de Chile.

2. OBJETIVOS

2.1. OBJETIVO GENERAL

Aportar al conocimiento del comportamiento de los coeficientes de escorrentía instantáneos en la cuenca del Tutuvén de la VII Región del Maule.

2.2. OBJETIVOS ESPECÍFICOS

- ❖ Determinar numéricamente los valores que alcanzan los coeficientes de escorrentía instantáneos, para lapsos de una hora y más.
- Aportar elementos de uso práctico que estimen el coeficiente de escorrentía, para su aplicación en la ingeniería de diseño.

3. -ANTECEDENTES GENERALES

La séptima región o Región del Maule (ver figura N°1), tiene una superficie de 30.296,1 Km², con una población estimada de 904.104 habitantes, generando una densidad poblacional de 29,8 hab/Km². La región cuenta con una actividad económica especializada en el rubro silvoagropecuario e industrial. En la primera, el sector forestal, la fruticultura de exportación y el hortícola son los más dinámicos; mientras que en el fabril, sobresale la agroindustria, que genera la mitad del valor agregado industrial regional, y las ramas ligadas a la madera y los vinos.

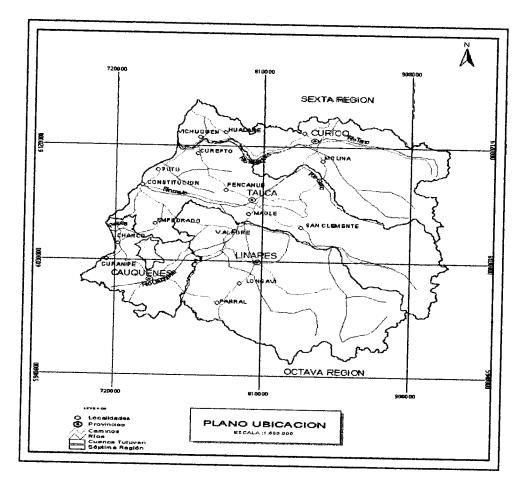


Figura Nº 1: Mapa de la Séptima Región del Maule. Fuente: Atlas geográfico y político, Chile y sus Regiones (2002).

La capital regional es la ciudad de Talca, en donde se encuentra la mayor concentración de la industria agroalimentaria y en donde además, existen algunas plantas menores de fabricación de fósforos, calzado y cuero. Tiene una división político administrativa que consta de cuatro provincias; Curicó, Talca, Linares y Cauquenes, cuyas capitales llevan el mismo nombre.

Es precisamente en la Provincia de Cauquenes, donde se ubica la zona de estudio, específicamente entre los 35° 41' y 35° 55' latitud sur y los 72° 8' y 72° 26' longitud oeste. Ella corresponde a la cuenca hidrográfica del río Loncomilla, cuenca que se encuentra dentro de la hoya hidrográfica del Maule. Es así como, la cuenca del Tutuvén posee una superficie de 211,78 Km² incluyendo el embalse Tutuvén con una capacidad máxima de 13 millones de metros cúbicos.

La cuenca posee un clima templado mediterráneo, con diferencias en sentido Norte-Sur, caracterizada por una estación seca de cuatro meses. Las precipitaciones aumentan en esta zona en comparación con la zona norte de la Región, siendo el promedio anual de 816 mm.

En cuanto a la temperatura, los promedios anuales fluctúan dependiendo de la ubicación más o menos alejada de la influencia marina y de sus características orográficas, con relieves de mayor o menor longitud. La temperatura media anual oscila entre 13° C y 15° C, con extremas de 22 ° C durante el periodo de verano; en cambio, en invierno las temperaturas mínimas medias son de 6 ° C.

La vegetación predominante que se origina en la zona es la categoría praderas y matorrales, entre los que se pueden encontrar chagual, brecillo, puyas y dicas; así como también, especies arbóreas, tales como boldo, litre, espino, roble, maqui, lingue, peumo, quillay, olivillo, canelo, arrayán, raulí, hualo, ruil y especies foráneas como pino, eucalipto y álamo, entre otros.

4. - REVISIÓN BIBLIOGRÁFICA

4.1. El Ciclo Hidrológico

En el ciclo hidrológico, resulta fundamental conocer los procesos que determinan el camino a seguir por el agua, desde su entrada en el sistema hidrológico, hasta que lo abandona.

El agua se evapora desde los océanos y desde la superficie terrestre, para volverse parte de la atmósfera; el vapor de agua se transporta y se eleva en la atmósfera hasta que se condensa y precipita sobre la superficie terrestre o los océanos; el agua que precipita puede ser interceptada por la vegetación, convertirse en flujo superficial o subsuperficial sobre el suelo, infiltrarse en él y descargar en los ríos como escorrentía superficial y, finalmente, fluye hacia el mar o se evapora a la atmósfera a medida que el ciclo hidrológico continúa (Chow et al, 1994).

Según Mintegui y López (1990), el ciclo hidrológico completo es un sistema cuasicerrado, con un único aporte de energía externa en forma de radiación solar; pero el ciclo hidrológico a nivel de cuenca hidrográfica, se expresa como un sistema abierto con entradas y salidas, representadas por las precipitaciones, la energía, las escorrentías y la evapotranspiración.

Es así como, al analizar el sistema hidrológico, se observa que el agua puede discurrir a través de él utilizando diferentes caminos. Puede moverse superficialmente a través de las laderas y cauces, y subterráneamente mediante su incorporación a los sistemas hidrogeológicos, o a través de numerosas vías intermedias (Mintegui y López, 1990).

Por lo tanto, el escurrrimiento total generado por una lluvia, está definido por el escurrimiento superficial, subsuperficial y subterráneo, entendiéndose por flujo subsuperficial, la parte del agua que escurre por las capas superiores del suelo y que por ende, posee un retardo con respecto al superficial, el cual depende de las características geológicas de la cuenca en estudio (Pizarro y Novoa, 1986).

De esta manera, la diferencia entre el volumen total de agua caída y el volumen que escurre durante la crecida, se conoce como pérdidas de agua. De estas pérdidas de agua, un porcentaje se pierde por evaporación o transpiración vegetal, denominándose déficit de escurrimiento. La porción restante, pasa a las napas freáticas, la cual fluye hacia los cauces con gran retardo, constituyendo el caudal base, que es el que manifiesta el río durante la época de estiaje o durante periodos sin precipitación, conociéndose como escurrimiento subterráneo (Pizarro y Novoa, 1986).

De todos los procesos y las fases por las que pasa el agua en la tierra, para este estudio son importantes de revisar los conceptos de precipitación y escorrentía.

Es así como, Singh (1988) señala que se puede intentar definir una determinación directa de la escorrentía a partir de las precipitaciones. Según Aparicio (1997), desde el punto de vista hidrológico, la precipitación es la fuente primaria del agua de la superficie terrestre y es la principal entrada de agua en una cuenca. Para Llamas (1993), las precipitaciones representan la caída de agua bajo cualquiera de sus formas sobre la superficie terrestre, sea lluvia, nieve o sus modificaciones. A lo anterior, Fernández (1995) agrega que la precipitación, junto con la temperatura, es el elemento climático más influyente en el medio natural. Esta caída corresponde al fenómeno físico de transferencia de agua entre la atmósfera y el suelo.

Sheng (1992), citado por Ramírez (1998), dice que los datos de precipitaciones son probablemente el factor más importante en cuanto a la evaluación de recursos hídricos, producción de cultivos, escorrentía y erosión.

4.2. Escorrentía

Las cuencas hidrográficas tienen una función reguladora de gran importancia dentro del ciclo hidrológico y es en ellas donde la producción forestal se desarrolla, y puede involucrar varias microcuencas. Es en este sentido, que debe realizarse un proceso de muestreo y medición para conocer la situación actual del comportamiento de las escorrentías a medida que la cubierta forestal se va desarrollando (Fuentes, 2001).

El ciclo de escorrentía es el término descriptivo que se aplica a aquella parte del ciclo hidrológico que ocurre entre la precipitación incidente sobre un área y la descarga subsiguiente de esta agua a través de cauces superficiales o evapotranspiración (Linsley et al, 1988).

López (1998), señala que la escorrentía es la parte de la precipitación que llega a la red hidrográfica de la cuenca y discurre por ella dando lugar a los caudales líquidos. Esta agua, que compone la corriente de un río, puede llegar al cauce por uno de los varios caminos disponibles, desde que llega a la tierra en forma de precipitación. Una porción del agua fluye por la superficie del suelo formando la escorrentía superficial y llega al cauce poco después de su aparición en forma de lluvia. Otra porción del agua se infiltra a través de la superficie del suelo y fluye por debajo de ésta hacia el cauce. Esta porción del agua se desplaza más lentamente que la escorrentía superficial y contribuye a mantener el caudal en el río durante los periodos de sequía (Linsley et al, 1988).

Se pueden distinguir dos tipos de escorrentías generadoras de caudales. En primer lugar están las escorrentías rápidas, que discurren por la superficie del terreno y por tanto llegan a los cauces en poco tiempo. En segundo lugar, están las escorrentías subsuperficiales y subterráneas que alimentan los cauces de una forma lenta y dan como resultado el caudal base que discurre por la red entre tormenta y tormenta (López, 1998).

La precipitación incluye a todas las formas de agua que alcanzan la superficie del terreno (Mintegui y López, 1990). Dicha precipitación, cae sobre una cuenca con una distribución temporal y una intensidad determinada y, al entrar en contacto con la cuenca, sufre pérdidas por retención e infiltración, quedando sobre la superficie y con libertad de movimiento una cantidad determinada, la cual se denomina precipitación efectiva o escorrentía. Es ella la que da origen a los caudales líquidos (López, 1998).

De esta manera, según Linsley et al (1988), la precipitación efectiva corresponde a la escorrentía directa y que se puede expresar como el cuociente entre el volumen escurrido y el área total de la cuenca. Además, la precipitación efectiva equivale a una lluvia uniforme caída sobre toda el área de la cuenca con intensidad constante y que escurre totalmente, por lo que equivale a la escorrentía.

En este sentido, es importante destacar que el caudal de crecida corresponde sólo al caudal directo, no incluyendo el gasto base correspondiente al escurrimiento subterráneo.

La escorrentía superficial llega al canal prontamente y si ocurre en cantidad suficiente, es un elemento importante en la formación de los picos de las crecientes. Sin embargo, la cantidad de escorrentía superficial puede ser pequeña, dado que el flujo superficial sobre un suelo permeable, sólo puede tener lugar cuando la intensidad de la lluvia es mayor que la capacidad de infiltración (Linsley *et al*, 1988).

Los factores que intervienen en la escorrentía según López (1998), son muchos y pueden citarse entre otros, los siguientes:

Factores agroclimáticos: Cantidad, intensidad y duración de la lluvia; distribución de la
precipitación respecto al tiempo y el área de la cuenca; condiciones precedentes de
humedad del suelo; intercepción causada por la cubierta vegetal, valor de la
evapotranspiración, etc.

 Factores fisiográficos: entre éstos cabe destacar la extensión; forma y pendiente media de la cuenca de recepción; condiciones de la superficie del terreno, como por ejemplo, geología, tipo de suelo, permeabilidad, labores de cultivo, densidad de la red hidrográfica y capacidad de evacuación de la misma, entre otras.

La forma y superficie de la cuenca tiene gran incidencia en el tiempo que demora el caudal evacuado por ésta. Así, en una cuenca circular, el agua tendrá que recorrer cauces secundarios antes de llegar a un curso principal; en cambio, en una cuenca alargada, el tiempo de concentración y el escurrimiento será menor, ya que en general se presenta un solo cauce que es el principal (Pizarro y Novoa, 1986).

Por otra parte, el relieve de la cuenca posee una mayor influencia en la escorrentía que la forma de la cuenca, dado que una mayor pendiente significará un menor tiempo de concentración de las aguas en la red de drenaje. En este sentido, Pizarro y Novoa (1986) definen el tiempo de concentración, como el tiempo necesario para que el escurrimiento superficial se movilice desde el punto más remoto de la cuenca, hasta el lugar de control.

Para determinar la cantidad de escorrentía producida por las precipitaciones, existe una variedad de formas o métodos citados en la literatura respectiva. Entre ellos están los modelos paramétricos, el análisis de hidrogramas, el cálculo del coeficiente de escorrentía y el método del Número de curva propuesto por el U.S. Soil Conservation Service.

4.3. Coeficiente de escorrentía

Según Chow et al (1994), el coeficiente de escorrentía es la relación entre la tasa pico de escorrentía directa y la intensidad promedio de la precipitación en una tormenta. Para Ferrer (1993), es la precipitación de la intensidad de lluvia i, que genera escorrentía superficial.

Mintegui y López (1990), denominan como coeficiente de escorrentía, al cuociente entre la precipitación efectiva y la precipitación total, correspondiendo esta última a aquella precipitación que se convierte en escorrentía directa o de tormenta.

De esta manera, el coeficiente de escorrentía depende de factores tales como la tormenta, las características del suelo y de la cubierta vegetal, la pendiente y el área de la cuenca, entre otros (Chow, 1994).

A lo anteriormente expuesto, Mintegui y López (1990) agregan que para un conjunto de vegetación, edafología y geomorfología, el coeficiente de escorrentía aumenta con la intensidad de precipitación caída, con el total de precipitación recibida en la cuenca y con la humedad antecedente.

Existen variadas formas que permiten enfrentar el cálculo del coeficiente de escorrentía, pero una de las más aceptadas es la que usa el manual de carreteras, del Ministerio de Vivienda y Urbanismo de España, e idéntico manual del Ministerio de Obras Públicas de Chile (Pizarro y Novoa, 1986).

En éste se presenta una tabla de doble entrada que examina 4 factores que inciden en el comportamiento del coeficiente de escorrentía, como son el relieve, la infiltración, la vegetación y la capacidad de almacenar agua. El uso de la tabla selecciona el valor asignado a la situación de cada factor y suma las contribuciones de cada uno de ellos. Con el valor mencionado y que se denomina K, se estima el coeficiente de escorrentía, el cual es adimensional (ver tabla N° 1).

Tabla Nº 1. Cálculo del coeficiente de escorrentía, a través del Manual de Carreteras.

	10	Llano, pendientes	inferiores al 5%		5	Muy permeable, Arena.		5	Mucha, hasta el 90% de	la superficie.	5	Mucha		
S DE LA CUENCA	20	Ondulado, pendientes	entre el 5% y el 10%		10	Bastante permeable	Normal.	10	Bastante, hasta el 50%	de la superficie.	10	Bastante		4
CARACTERÍSTICAS DE LA CUENCA	30	Accidentado, pendientes	entre el 10 % y el 30%.		15	Bastante inpermeable	Arcilla.	15	Poca, menos del 10% de	la superficie.	15	Poca		$K = K_1 + K_2 + K_3 + K_4$
	40	Muy accidentado	pendiente superior al	30%	20	Muy impermeable	Roca.	20	Ninguna		20	Ninguna		
	1 Relieve del terreno		(K_1)		2Permeabilidad del	suelo (K ₂)		3 Vegetación (K ₃)			4 Capacidad de	almacenaje de Agua	(K4)	

Valor de K	75-100	50-75	30-50	25-30
comprendido entre				
Coeficiente de	0,65-0,80	0,50-0,75	0,35-0,60	0,20-0,40
escorrentía				

Fuente: (Pizarro et al, 1988).

Por otra parte, en la figura N° 2, se puede distinguir en forma general el pluviograma, representado por las precipitaciones caídas v/s tiempo y el pluviograma neto, determinado por las precipitaciones efectivas v/s tiempo (Teméz, 1978).

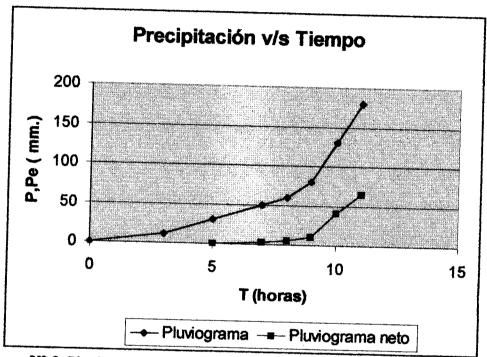


Figura Nº 2. Pluviograma y pluviograma neto para una tormenta.

De esta manera, si P es la precipitación y Pe la precipitación efectiva, se puede plantear un coeficiente de escorrentía en términos diferenciales, de la forma siguiente:

$$e = \frac{dPe/dt}{dP/dt} = dPe/dP$$

4.4. Método del Número de Curva

El Soil Conservation Service estableció una clasificación de los llamados complejos hidrológicos suelo- vegetación, a los que asignó una capacidad de infiltración, o mejor dicho un comportamiento ante la precipitación (Mintegui y López, 1990). Además, define a cada complejo como un tipo de suelo hidrológico y una cubierta de vegetación, asociada a un tratamiento cultural.

Según López (1998), se pueden tener infinitas respuestas de escorrentías ante una precipitación, dependiendo del tipo de asociación suelo-vegetación. Estas respuestas constan de dos partes diferenciadas: la primera es el valor de un Umbral de Escorrentía (Io), por debajo del cual las precipitaciones no provocan escorrentía. Luego de superar este valor, se entra en la segunda parte, en la cual la cantidad de escorrentía va aumentando acercándose al valor de las precipitaciones, hasta que la curva tiende asintóticamente a una inclinación de tangente igual a la unidad; esto significa que, todo lo precipitado en un tiempo determinado, escurre.

La segunda parte queda reflejada en la figura N° 3, en donde se determina el monograma que determina la escorrentía en función de la precipitación y del Número de curva (López, 1998).

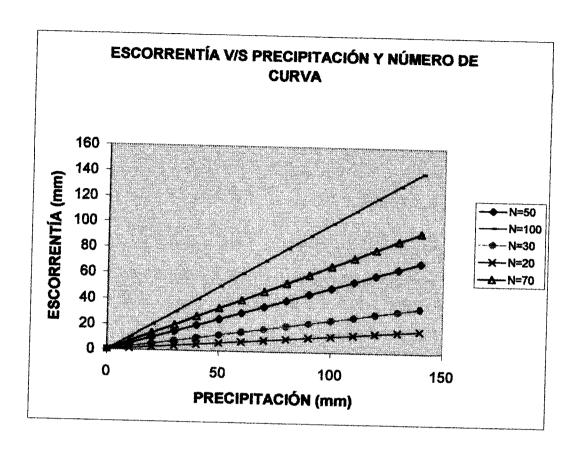


Figura Nº 3. Monograma para determinar la escorrentía en función de la precipitación y del Número de Curva.

Este método, utiliza un único parámetro, denominado número de curva (NC), que engloba las características de la cuenca: usos de suelo, tipo de práctica con la que se cultiva, tipo de suelo, condiciones previas de humedad y condiciones hidrológicas para la infiltración.

Según López (1998), a cada tipo de complejo suelo-vegetación, se le asigna un valor llamado Número de Curva o Número Hidrológico, que define sus condiciones hidrológicas y en donde los suelos se clasifican en cuatro grupos:

- Grupo A: es el que ofrece menor escorrentía mayor permeabilidad, comprende terrenos arenosos, arenosos-limosos, loess, etc.
- Grupo B: suelos de moderada permeabilidad, aquellos de textura franco-arenosa de mediana profundidad y los francos profundos.
- Grupo C: presenta poca permeabilidad, su textura es franco- arcillosa o arcillosa.
- Grupo D: ofrece mayor escorrentía, presenta gran impermeabilidad, terrenos muy arcillosos.

En cuanto a la cubierta vegetal, se establecen distintas clases con gradaciones, según el tipo de actividad que se realice y en las condiciones en que ésta se ejecute. Cuanto más denso es un cultivo, mejor es su condición hidrológica para la infiltración y menor es el valor del número representativo de la escorrentía.

El estudio de las escorrentías considera el estado de humedad del suelo, considerando la cantidad de lluvia caída en el periodo de los cinco días anteriores, estableciéndose tres clases de situaciones clasificadas según la cantidad de precipitaciones y el periodo húmedo o seco en que ocurren. Se considera como condición de humedad media o normales a la condición II; si el suelo se encuentra saturado se esperará una escorrentía mayor (condición III); si el suelo está seco, la escorrentía será menor (condición I) (López, 1998).

Los números obtenidos para el complejo suelo-vegetación, estarán bajo la condición II, pero deberán modificarse a una u otra condición según sean las precipitaciones precedentes.

La escorrentía superficial que se produce en cada intervalo, estará determinada por las siguientes ecuaciones:

Q(ij) = 0 si
$$\sum P(ij) < 0.2 \text{ S}$$

Q(ij) = $(\sum P(ij) - 0.2 \text{ S})^2 - Q(ij-1)$ si $\sum P(ij) > 0.2 \text{ S}$
 $(\sum P(ij) + 0.8 \text{ S})$

Donde:

Q(ij) = escorrentía superficial para la tormenta i, a la hora j (mm).

Io = umbral crítico de escorrrentía (0,2 S)

S = máxima infiltración (mm).

Pij = precipitación para la tormenta i, para la hora j (mm).

4.5. Influencia de la vegetación sobre la precipitación

La superficie boscosa incide sobre las precipitaciones, ya sean éstas lluvia o nieve, interceptando o reteniendo el agua, por medio de sus hojas y ramillas, ocasionando a su vez que parte de ésta no llegue al suelo.

Para Llamas (1993), el agua que llega al suelo es la precipitación neta y el volumen que queda en el estrato vegetal, la intercepción.

Entre los factores que influyen en este proceso, pueden destacarse la especie vegetal y su edad, el tipo de bosque y las circunstancias del medio (temperatura ambiental y presión atmosférica).

La experiencia demuestra que las especies de hoja caduca, interceptan un volumen de lluvia menor que las de hoja perenne (fundamentalmente coníferas) y que la intercepción aumenta, en general, con la edad de los árboles hasta un límite en que empieza a disminuir (Fernández, 1992).

Por último, las consecuencias de la intercepción en la conservación del suelo son de especial importancia, ya que al retirar parte de la precipitación de una tormenta, también parte de la remoción y movilización del suelo es retirada, siendo en este sentido, más eficaces las masas cuanto mayor sea su capacidad interceptora (López, 1998).

4.6. Influencias de la vegetación sobre la infiltración

La permeabilidad según López (1998), está definida por los grandes poros a través de los cuales el agua puede moverse por la acción de la gravedad.

En este sentido, el agua que penetra en el suelo, ingresa a una cierta velocidad a través del perfil, la cual va a depender de la porosidad de los horizontes superficiales; es así como, la infiltración disminuye rápidamente en relación directa con la profundidad del suelo, y es muy superior en los suelos forestales que en los agrícolas (Fernández, 1992).

Las razones que favorecen esta permeabilidad de los suelos forestales, se fundamentan en la continua incorporación de la materia orgánica al suelo forestal, lo que determina que la estructura del suelo sea más granular. Esta incorporación varía con el tipo de bosque y a lo largo de las estaciones del año.

Por otra parte, las raíces juegan un papel importante, en especial en la vegetación arbórea, ya que al descomponerse crean innumerables canalillos, más o menos vacíos o rellenos de material sumamente permeable, por donde circulan las aguas con relativa facilidad (Fernández, 1992).

Según López (1998), la infiltración es mayor en masas arbóreas adultas que en las jóvenes, en los bosques sin pastoreo que en los pastados y en los montes claros que en los rasos.

4.7. Influencias de la vegetación sobre la escorrentía

Para Fernández (1992), la influencia de la vegetación, principalmente los bosques, modifica la forma en que la escorrentía accede a los cauces, disminuyendo drásticamente las aportaciones de superficie y a la vez aumentando las subterráneas.

Lo anterior se debe a diversas situaciones y entre los cuales están:

- La mayor infiltración con que dota a los suelos.
- La intercepción de la precipitación que disminuye la intensidad de los aguaceros y disminuye las cantidades de agua a lo largo del tiempo.
- La transpiración de las plantas que regula la dosis de humedad en el suelo, manteniendo una capacidad de infiltración disponible aún en los periodos de gran humedad.
- La gran capacidad de absorción del agua de las cubiertas de restos vegetales y húmicas, propias de las masas forestales, que retrasa el punto de encharcamiento y, por lo tanto, el comienzo del flujo superficial.

El control de la escorrentía superficial por parte de la vegetación es también muy importante, pues reduce los caudales originados por grandes aguaceros, reduciendo las posibilidades de que se produzcan grandes avenidas de agua e inundaciones.

4.8. Influencia de la vegetación sobre el suelo

El suelo está considerado como unos de los principales recursos en las actividades silvoagropecuarias. Su baja tasa de generación lo clasifica prácticamente como un recurso natural no renovable, por lo que se constituye como un elemento del medio ambiente en el que su comportamiento debiera ser evaluado (Wischmeier *et al*, 1978).

El daño ambiental que puede generar el agua que cae sobre un suelo y escurre por la superficie de la tierra, puede ser muy significativo, sobretodo cuando se encuentra fuertemente influenciado por la pendiente, la que determina una mayor acumulación de agua escurriéndose por la misma, en el grado de inclinación de ésta, el cual condiciona la velocidad de escurrimiento de las aguas. Al disminuir la velocidad del agua, se aumenta la infiltración y disminuye la escorrentía (Fuentes, 2001). De esta manera, la erosión hídrica afecta sustancialmente la calidad y productividad de los suelos, e incide drásticamente en el plano físico y social del ecosistema rural. Es así como, la pérdida de los suelos, constituye un decremento de los recursos naturales, ya que la formación de un centímetro de suelo, puede fácilmente necesitar de miles de años para ser recuperado (Pizarro, 1993).

En cuanto a la circulación por regueros, la vegetación produce una microtopografía que permite diversificar las líneas de circulación, evitando la concentración del agua en líneas definidas. Por otra parte, sus sistemas radicales impiden el crecimiento en ancho y profundidad de los regueros.

En cárcavas y barrancos, los sistemas radicales proporcionan al suelo una resistencia notable frente al arrastre de sus materiales, así como al desplome o deslizamientos superficiales.

5. METODOLOGÍA

5.1. Marco General

El presente estudio se realizó con el fin de determinar y analizar el comportamiento de los coeficientes de escorrentía instantáneos, generados en la cuenca del Tutuvén en la séptima región. Para tal efecto se utilizó el Método del Número de Curva, en donde se simularon distintas coberturas vegetacionales.

5.2. Materiales y Equipos

Para llevar a cabo la ejecución de este estudio, fue necesario contar con los siguientes materiales y equipos.

- Intensidades de precipitación horaria de 30 tormentas, periodo 1982-1998, con datos pertenecientes a la Dirección General de Aguas de la Séptima Región.
- Cartas Topográficas I.G.M., ESCALA 1:50.000 pertenecientes a Cauquenes,
 Pichibelco y Empedrado (VII Región).
- Mosaicos (actualizado 1985), con capacidad de uso de suelo preparado para servicio de impuestos internos, ESCALA 1: 20.000; N° 3530- 7200 D, N° 3530-7200 E, N° 3550-7200 A y N° 3550-7200 B (VII Región).
- Cartografía digital (año 1994), correspondiente al catastro de los recursos vegetacionales, perteneciente a CONAF.
- Equipos computacionales (PC e impresoras), con programas tales como Microsoft Excel 98, Microsoft Word 98, el Software Arc View V. 3.1. y el Software estadístico, Statgraphics Plus V. 1.4.

5.3. Fases Metodológicas

Las etapas consideradas en este estudio, corresponden a fases de trabajo que han sido aplicadas por otros estudios realizados por el Departamento de Gestión Forestal y Ambiental de la Facultad de Ciencias Forestales de la Universidad de Talca, respecto a temas que siguen una secuencia hidrológica común. De esta forma, la metodología de investigación comprende de manera específica las siguientes etapas:

5.3.1. Revisión Bibliográfica

Esta primera etapa consistió en la obtención y recopilación de información, a través de distintos medios, tales como la literatura técnica especializada, en temas relacionados con la escorrentía, precipitaciones, coeficientes de escorrentía, vegetación y el método del Número de Curva. Además, se caracterizó el lugar de estudio en cuanto a su hidrología, climatología, geología, etc.

5.3.2. Obtención de la información requerida

La información pluviográfica necesaria para el desarrollo de este estudio, fue facilitada por la Dirección General de Aguas VII Región, organismo encargado de la captura de datos de esta naturaleza a lo largo del país, obedeciendo a la línea de trabajo del Ministerio de Obras Públicas, Transporte y Telecomunicaciones del Estado. Esta información correspondió a las intensidades de precipitación horaria de treinta tormentas de una estación cercana a la cuenca en estudio, ya que no se contaba con información pluviográfica de la zona.

La estación más cercana y con características similares en cuanto a precipitaciones, vegetación y suelos, correspondió a la estación de Melozal, además de corresponder a una estación que está bajo un régimen estricto de manejo. De esta manera, el periodo de estudio quedó comprendido entre los años 1982 y 1998.

La información cartográfica en formato digital, correspondió al catastro de recursos vegetacionales, la cual fue facilitada por CONAF, VII Región.

5.3.3. Caracterización y digitalización de la cuenca

En esta etapa se procedió a traspasar la información analógica a formato digital, dado que es más rápido y fácil de trabajar este tipo de formato. El traspaso de información fue efectuado en el laboratorio de SIG de la Universidad de Talca y el software utilizado fue el Arc View versión 3.1.

La información sobre los recursos vegetacionales, fue entregada en formato digital, por lo que solamente fue necesario el traspaso de la información de suelos.

Para comenzar, se utilizaron cartas topográficas I.G.M., ESCALA 1: 50.000 y mosaicos ESCALA 1: 20.000 de la zona. Las cartas topográficas fueron necesarias para la ubicación de la cuenca del Tutuvén. Además de proporcionar información hidrológica y topográfica del lugar, los mosaicos entregaron la información con respecto a las clases de suelos, geomorfología y usos de suelo.

Para la obtención de esta información, se utilizó el Manual de Materiales y Símbolos de CIREN-CORFO (1983), en donde los elementos necesarios para fines de este estudio, fueron el desarrollo del perfil, el drenaje y la textura.

Las fórmulas principales que se encontraron en la zona, según tipos de suelo representados en los mosaicos 1: 20.000, constan de dos partes: la primera corresponde a las letras mayúsculas que indican el nombre del suelo (ejemplo: ET= suelo San Esteban) y la segunda parte, es una fracción que describe las características del suelo.

La segunda parte, correspondiente a la fracción, tiene el numerador compuesto de 3 cifras; una cifra indica el grado de desarrollo del perfil y grado de intemperización del material original; la cifra siguiente indica el drenaje interno o humedad en el interior del perfil y una tercera cifra que, indica la textura del suelo superficial.

Ejemplo: Fórmula Principal

ET
$$\frac{524}{E}$$
 Para este estudio, sólo se tomó en cuenta el numerador.

Con respecto a la vegetación, la información se obtuvo en formato digital, en donde se clasificaron las diversas coberturas del sector.

Por otra parte, se identificaron cuatro puntos de control en el mosaico, luego se configuró la mesa digitalizadora, para ingresar las coordenadas en UTM de izquierda a derecha en el programa Arc View V. 3.1. y digitalizar los polígonos de suelos correspondientes.

Una vez obtenida la capa de suelo en formato digital, se procedió a identificar cada uno de los tipos de suelo de acuerdo a la clasificación determinada en el Método del Número de Curva, señalado anteriormente en la Revisión Bibliográfica y que se describe con mayor detalle en los siguientes puntos de la metodología.

Finalmente, se traslapó la capa vegetacional, con la capa de suelo, considerando además las condiciones de humedad. De esta manera, se obtuvo una nueva capa, la cual fue identificada como la capa de intersección, en donde se determinó el número de curva correspondiente a cada sector.

5.3.4. Selección de las tormentas

La información pluviográfica necesaria para el estudio, fue facilitada por la Dirección General de Aguas de la VII Región del país. Esta información correspondió a los datos entregados por las bandas de los pluviógrafos, en donde se procedió a medir en intervalos de 1, 2 y 4 horas, las intensidades de precipitación.

Se analizaron las bandas de registro de los pluviógrafos, tomando como referencia de medición las 08: 00 horas de la mañana de un día, hasta las 08: 00 horas de la mañana siguiente, para una duración de 24 horas. Se determinó de esta forma, ya que las mediciones en terreno de las precipitaciones, se hacen a partir del horario antes mencionado.

Luego fue necesario, según el caso, desplazarse en intervalos de tiempo de una, dos y cuatro horas con el propósito de ir seleccionando las precipitaciones. De esta manera, se tomaron los valores de cada una de las series y se dividieron por su duración; para el primer caso, la duración fue de una hora, por lo tanto las intensidades en mm/ hora, fueron las mismas que los valores de las precipitaciones.

Finalmente se seleccionaron 30 tormentas, 15 de las cuales fueron de alta intensidad y 15 de baja intensidad; éstas correspondieron a las tormentas desde el año 1982 hasta el año 1997, de la estación Melozal.

5.3.5. Determinación de situaciones de vegetación

En esta fase del proyecto, se determinaron distintas coberturas vegetacionales, con el fin de determinar la influencia de los distintos tipos de vegetación, en la escorrentía superficial.

La primera situación de vegetación simulada, fue una situación de vegetación plena, en donde a cada sector se le asignó una cubierta de Pinaceas en condiciones buenas, según la tabla de Ponce (1989), establecida para la aplicación del método del Número de curva ver (Anexo I). En este marco, se debe tener presente que las clases de vegetación de las tablas de Ponce, en cierto grado se asimilan a las coberturas de Chile, por lo que para una mayor efectividad, se requirió de un experto en silvicultura que ayudó a adecuar las coberturas vegetacionales de esta zona a las de la tabla de Ponce (Santelices, 2002).

En segundo lugar, se determinó la vegetación existente actualmente en el sector, en donde las diversas coberturas vegetales, fueron clasificadas en distintos tipos según sus condiciones hidrológicas, con gradaciones de pobres a buenas para la infiltración.

Por último, se determinó la situación de mínimo bosque, que en este caso correspondió, según la Tabla de Ponce, a una cubierta de Matorral abierto, en condiciones hidrológicas malas; esta cubierta fue determinada con el fin de generar en el sector la mayor escorrentía superficial posible.

5.3.6. Cálculo del Número de Curva

Una vez determinadas las cubiertas vegetacionales y los diversos tipos de suelo en la cuenca en estudio, se procedió a calcular los números de curvas, para las distintas situaciones de vegetación y suelos existentes en el sector, considerando además, las condiciones de humedad del suelo descritas en el método. En función de lo anterior, se establecen 3 condiciones diferenciales de humedad (condición I, II y III) y 3 situaciones de vegetación (VP: Vegetación plena, VA: Vegetación actual o intermedia, VR: Vegetación rala). Luego, se dan 9 posibles escenarios de vegetación y humedad del suelo precedentes. Así se tiene:

Primer escenario: V

Vegetación plena, Condición I (VPCI).

Segundo escenario:

Vegetación plena, Condición II (VPCII).

Tercer escenario:

Vegetación plena, Condición III (VPCIII)

Cuarto escenario:

Vegetación actual o intermedia, Condición I (VACI)

Quinto escenario

Vegetación actual o intermedia, Condición II (VACII).

Sexto escenario

Vegetación actual o intermedia, Condición III (VACIII).

Séptimo escenario:

Vegetación rala, Condición I (VRCI).

Octavo escenario:

Vegetación rala, Condición II (VRCII).

Noveno escenario:

Vegetación rala, Condición III (VRCIII).

Estos escenarios serán los analizados en función del comportamiento del coeficiente de escorrentía, frente a distintas intensidades y montos de precipitación.

En la Tabla N° 2, se presentan las condiciones precedentes de humedad, establecidas según la lluvia total caída durante los cinco días anteriores (López, 1998). Se debe tener en cuenta el periodo en que se consideran las condiciones precedentes y ello va a depender si se encuentra dentro de un periodo seco (Octubre- Marzo), o en un periodo húmedo (Abril- Septiembre).

Tabla Nº 2. Condiciones precedentes de humedad.

Lluvia total caída durante los cinco días anteriores					
Condición Periodo seco: Octubre- Marzo Periodo húmedo: Abril- Septiemb					
I	Menos de 12,5 mm.	Menos de 35,5 mm.			
II	De 12,5 a 28 mm.	De 35,5 a 53 mm.			
III	Más de 28 mm.	Más de 53 mm.			

Fuente: López,1988.

Como en la tabla de Ponce (1989), los números de curva están establecidos para la condición de humedad normal (II), se procedió a modificar este valor según la condición de humedad correspondiente. En la Tabla N° 3, se presenta la Conversión del Número de Curva de la Condición II a las condiciones I y III (López, 1998).

Una vez determinados los números de curva, se obtuvo el valor de S que representa la máxima infiltración. Para la obtención de este valor se utilizó la siguiente expresión:

$$S = 254 ((100 / N) - 1)$$

Donde:

S= máxima infiltración (mm).

N= número de curva.

Luego, se calculó la escorrentía superficial en cada uno de los intervalos de precipitación, de acuerdo a lo citado en la revisión bibliográfica; además de los 9 escenarios anteriores, se determinaron las escorrentías superficiales para las 15 tormentas de alta intensidad y 15 de baja intensidad.

Tabla N° 3. Conversión del Número de Curva de la Condición II a las Condiciones I y III.

Número de curva en la condición	Número de curva co condi	orrespondiente a las ciones
П	I	III
100	100	100
95	87	99
90	78	98
85	70	97
80	63	94
75	57	91
70	51	87
65	45	83
60	40	79
55	35	75
50	31	70
45	27	65
40	23	60
35	19	55
30	15	50
25	12	45
20	9	39
15	7	33
10	4	26
5	2	17
0	0	0

Fuente: López, 1988.

5.3.7. Determinación de la precipitación efectiva

La precipitación efectiva, es decir, la cantidad de lluvia que genera realmente escorrentía, se calculó para las distintas situaciones mencionadas en el punto 5.3.6. y en intervalos de 1 hora, 2 horas y 4 horas, quedando expresada en mm. De este modo, la precipitación efectiva fue calculada mediante la fórmula siguiente:

$$Pe_{ij} = Q_iij_j - Q_iij_{-1}$$

Donde:

Pe_{ij} = precipitación efectiva para la tormenta i, para la hora j (mm).

Q_{ij} = escorrentía superficial para la tormenta i, para la hora j (mm).

5.3.8. Cálculo del coeficiente de escorrentía

En esta etapa, se determinaron los coeficientes de escorrentía instantáneos para lapsos de 1, 2 y 4 horas en las distintas situaciones planteadas; es así como, el coeficiente de escorrentía, fue determinado discretamente, por la expresión:

$$\mathbf{C_{ij}} = \frac{\Delta \left(Pe_{i j} - Pe_{i (j-1)} \right)}{\Delta \left(P_{ij} - P_{i (j-1)} \right)}$$

Donde:

 C_{ij} = coeficiente de escorrentía para la tormenta i, para la hora j.

Pe_{ij} = precipitación efectiva para la tormenta i, para la hora j (mm).

 P_{ij} = precipitación para la tormenta i, para la hora j (mm).

 Δ = differential de variable.

5.3.9. Cálculo del coeficiente de escorrentía en función del Manual de Carreteras

Este cálculo se efectuó, de manera de comparar en una primera aproximación, los resultados alcanzados mediante este método y los determinados por el Método del Número de Curva, base de este estudio.

Así, después de haber obtenido los coeficientes de escorrentía instantáneos en los 9 escenarios planteados, se procedió a calcular el coeficiente de escorrentía mediante la tabla presentada por el Manual de Carreteras, el cual está basado en las características de la cuenca.

En este sentido, según el Manual de Carreteras se consideran 4 características importantes de la cuenca, que influyen notablemente en el comportamiento de las escorrentías; es así como, el relieve del terreno, la permeabilidad del suelo, la vegetación y la capacidad de almacenaje de agua, tomaron gran relevancia.

A continuación se determinó cada característica de la cuenca, para luego clasificarla dentro de la tabla del Manual de carreteras con un valor K. De esta manera, se calculó la pendiente de la cuenca (en este estudio se utilizó la Pendiente media de Mociornita). En lo que respecta a la permeabilidad del suelo, ésta fue determinada según las características de los suelos determinados en el número de curva; la vegetación se determinó según el catastro vegetacional y, la capacidad de almacenaje de agua, de acuerdo a la permeabilidad del suelo.

Una vez obtenidos los valores K para cada característica, se sumaron, dando un valor K total (Kt), el cual determinó el correspondiente coeficiente de escorrentía para la cuenca.

5.3.10. Análisis Estadístico

Considerando los 9 escenarios planteados, se procedió a realizar regresiones lineales entre los montos de precipitación y los coeficientes de escorrentía máximos de cada tormenta, tanto de alta como de baja intensidad, de manera de establecer funciones que representen la relación entre estas variables.

5.3.10.1. Análisis de Regresión

Para establecer la calidad de la regresión, se analizaron los supuestos de regresión para la función modelada y este análisis debe probar los supuestos de Normalidad, Homocedasticidad y No-Autocorrelación. Además, se utilizó como medida de bondad de ajuste al Coeficiente de Determinación R² y el Error estándar de estimación EEE.

5.3.10.1.1. Supuestos de Regresión

a. Supuesto de Normalidad

Las pruebas para determinar si se cumple o no el supuesto de normalidad, o sea, que las perturbaciones poblacionales tienen una distribución normal, son el Test de Kolmogorov - Smirnov y el gráfico de Probabilidad normal de residuos.

(i) Test de Kolmogorov - Smirnov

Este test viene incorporado en numerosos programas estadísticos actuales, como por ejemplo, el programa Statgraphichs Plus. Una vez ingresados los datos correspondientes, el programa entrega los siguiente resultados:

Test Kolmogorov - Smirnov (95% de confianza)

Estadístico Kolmogorov DPLUS - Estadístico Kolmogorov DMINUS Estadístico DN - Valor-p Aproximado

- ➤ Si el valor-p > 0.05. Entonces se acepta Ho (Ho: El ajuste cumple la condición de normalidad).
- ➤ Si el valor-p < 0.05. Entonces se rechaza Ho (Ha: El ajuste no cumple con la condición de normalidad).

(ii) Probabilidad normal de residuos

Para este estudio se utilizó un gráfico de probabilidad de residuos. Se prefirió utilizar esta gráfica, puesto que se visualiza mejor la distribución de los residuos (Montgomery et al, 1996). En la gráfica, los residuos deberían estar dispuestos homogéneamente sobre la recta para no rechazar la hipótesis nula, de modo que se asemeje a la figura Nº 4 (Vallejos, 1999).

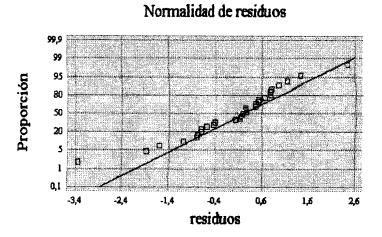


Figura Nº 4. Probabilidad normal de los residuos.

b.- Supuesto de Homocedasticidad

Gráfico de residuos ⇒ Este método gráfico detecta la heterocedasticidad a través de la presencia de patrones de comportamiento sistemático de los residuos. Para ésto, se construye un gráfico de los residuos estimados al cuadrado (ordenada) y los valores estimados de la variable dependiente (abscisa). Con este gráfico se puede inferir si existe o no un comportamiento sistemático de acuerdo a algunos patrones, como se muestra en la figura N° 5 (Gujarati, 1992).

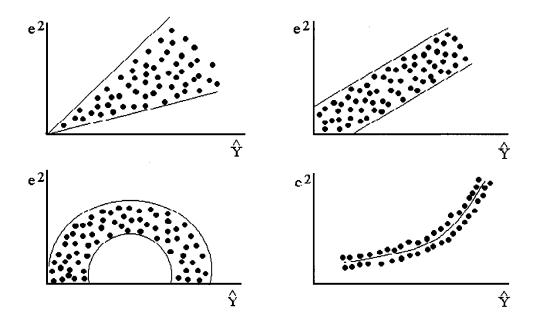


Figura Nº 5. Gráfico de dispersión de los residuos con presencia de heterocedasticidad.

c.- Supuesto de No-Autocorrelación (Independencia)

Este supuesto pretende probar que las muestras son independientes unas de otras y que no están indexadas en función de alguna variable. Esto se evaluó a través del método d de Durbin-Watson, apoyado por medio del gráfico residuos v/s tiempo (gráfico de autocorrelación estimada para residuos).

(i) Método d de Durbin y Watson \Rightarrow Este método da origen a tres zonas: una zona de rechazo, una zona de aceptación de la hipótesis nula y una zona de indiferencia en donde el método no es capaz de determinar la cantidad de evidencia en contra de la hipótesis alternativa. El valor de d fue estimado automáticamente a través del programa Statgraphics Plus V.1.4. En la tabla N° 4, se dan a conocer las reglas de decisión de la prueba.

Tabla Nº 4. Reglas de decisión de la prueba Durbin y Watson.

Hipótesis Nula	Decisión	Si
No existe autocorrelación positiva	Rechazar	$0 < d < d_L$
No existe autocorrelación positiva	No hay decisión	$d_{\rm L} \le d \le d_{\rm U}$
No existe autocorrelación negativa	Rechazar	$4 - d_U < d < 4$
No existe correlación negativa	No hay decisión	$4 - d_{\mathrm{U}} \le d \le 4 - d_{\mathrm{L}}$
No existe autocorrelación positiva o negativa	No rechazar	$d_{\mathrm{U}} < d < 4 - d_{\mathrm{U}}$

 \mathbf{d} : valor de Durbin y Watson; $\mathbf{d}_{\mathbf{L}}$: valor crítico inferior; $\mathbf{d}_{\mathbf{U}}$: valor crítico superior. (Gujarati, 1992).

(ii) Gráfico de residuos v/s tiempo ⇒ Este gráfico se basa en el análisis de una serie de tiempo, por medio de una representación entre los residuos obtenidos del ajuste de un modelo y el tiempo. Hipotéticamente, la figura N° 6 indica que existe un intervalo de confianza (línea punteada) donde el número de frecuencias de los residuos (barras) está dado por "I" intervalos (Gujarati, 1992). La existencia de una o más frecuencias fuera del intervalo, revela la presencia de autocorrelación; de lo contrario, no existe correlación serial en el modelo (Cid et al, 1990).

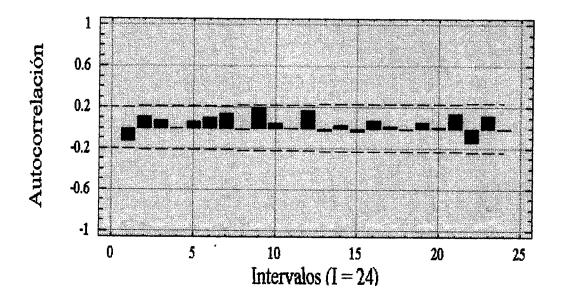


Figura Nº 6: Gráfico hipotético de autocorrelación de residuos (no hay presencia de correlación serial).

5.3.10.1.2. Medidas de bondad de ajuste del modelo

(i) Coeficiente de Determinación R²

Este coeficiente representa el porcentaje de variación de los datos reales que es explicado por el modelo seleccionado. El valor de este coeficiente fue obtenido a través del programa estadístico Statgraphics Plus. V.1.4.

(ii) Error Estándar de Estimación (EEE)

Señala en promedio, cuánto se desvía cada dato estimado con respecto al dato real. Su expresión es la siguiente:

$$EEE = \sqrt{\sum (y - \hat{y})^2 / (n - r)}$$

Donde; y: Aportaciones específicas reales, ŷ: Aportaciones modeladas, n: Número de datos considerados y r: Número de variables consideradas.

El EEE es un estimador indirecto, dado que los valores que resulten de aplicar la expresión señalada, son inherentes al tipo de información utilizada y no son directamente comparables con los resultados de otro conjunto de datos. El valor del EEE se obtuvo de forma automática a través del programa Statgraphics Plus V 1.4, al igual que el R².

5.3.11. Análisis y Discusión de resultados

Una vez que se obtuvieron resultados, se pudo analizar el comportamiento de cada situación determinada por el Método del Número de Curva, de manera de conocer cuáles situaciones provocaron mayores o menores coeficientes de escorrentías, o cómo fue su comportamiento con respecto a los otros coeficientes de escorrentía.

Por último, todos los resultados que se produjeron con la aplicación del Método del Número de Curva, fueron comparados en una primera aproximación con los coeficientes de escorrentía obtenidos en el Manual de Carreteras. A partir de este análisis, fue posible inferir ciertos comportamientos del coeficiente de escorrentía y sugerir pautas técnicas para su estimación.

5.3.12. Conclusiones y Recomendaciones

Todas las conclusiones y recomendaciones generadas en este estudio, fueron establecidas en relación a los objetivos planteados al comienzo de esta memoria y los resultados alcanzados.

6. PRESENTACIÓN DE RESULTADOS

De acuerdo a la metodología aplicada, los resultados obtenidos son los siguientes:

6.1. Caracterización y digitalización de la cuenca

La digitalización de la cuenca, fue efectuada únicamente para el traspaso de información en formato digital y referida a los tipos de suelo, dado que la vegetación del sector, ya estaba digitalizada. En la figura N° 7 se presenta la base de datos generada para los grupos de suelos de la cuenca del Tutuvén.

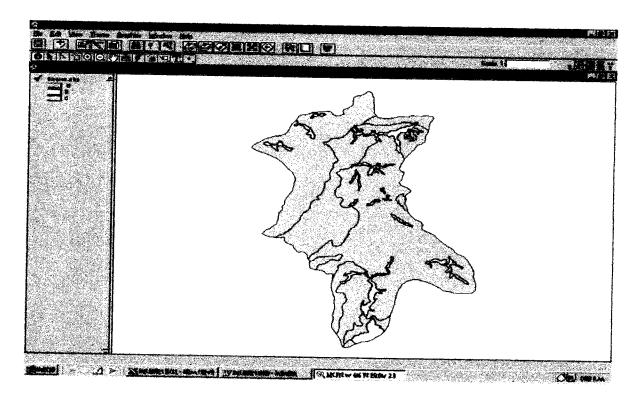


Figura Nº 7. Detalle de la base de datos de grupos de suelos generada para la cuenca del Tutuvén por el tratamiento digital en el Software Arc View 3.1 (Fuente: Elaboración propia).

Como se mencionó anteriormente en la metodología, para este caso se utilizó el Manual Materiales y Símbolos de CIREN-CORFO, en donde los elementos necesarios para este estudio fueron el desarrollo del perfil, el drenaje y la textura. El sector presentó suelos de buen drenaje y moderadamente buen drenaje; las texturas fueron franco arenosas y franco arcillosas. Ambos conceptos, en conjunto determinaron a los 7 tipos de suelo existentes en la zona, dentro de los grupos B y C, según el Método del Número de Curva. El detalle se muestra en el Apéndice I.

Finalmente en la Figura N° 8, se muestra la intersección, resultado de la combinación de 16 coberturas vegetacionales de la zona, con los 2 grupos de suelo: grupo B y grupo C. Esta intersección entregó como resultado 27 tipos de combinaciones.

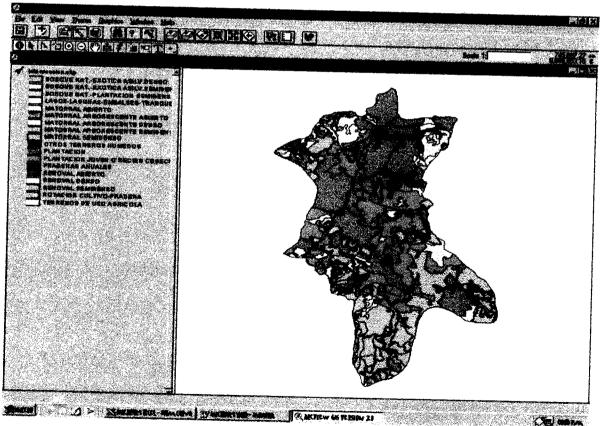


Figura Nº 8. Detalle de la base de datos de la intersección entre grupos de suelo y la vegetación, para la cuenca del Tutuvén (Fuente: Elaboración propia).

6.2. Selección de las tormentas

Las tormentas seleccionadas, correspondieron al periodo comprendido entre 1982- 1998, y para los meses de Mayo y Agosto; para el caso de este estudio, fueron seleccionadas un total de 30 tormentas, de las cuales 15 fueron de alta intensidad y 15 de baja intensidad. El criterio usado para la elección de las de mayor intensidad, se basó en la observación a simple vista, de las tormentas que presentaron una curva ascendente abrupta en un lapso corto; por el contrario, en el caso de las tormentas de baja intensidad, se eligieron aquellas que presentaron una curva menos abrupta en un lapso determinado.

6.3. Situaciones de vegetación

Las situaciones de vegetación determinadas fueron tres. La primera situación, fue para la vegetación plena (VP), clasificado según la Tabla de Ponce, dentro del tipo de cubierta de Pináceas en un estado hidrológico bueno.

La segunda situación correspondió a la vegetación actual (VA), en donde se determinaron las diversas cubiertas vegetales y Números de curva de la zona, dentro de la clasificación señalada por la Tabla de Ponce (ver Tabla N° 5).

La tercera situación se determinó para una zona rala o de mínima vegetación (VR), correspondiendo según Tabla de Ponce, a una cubierta de Matorral abierto, en condiciones hidrológicas malas.

Tabla N° 5. Cubiertas vegetales y Números de curva determinados según Tabla de Ponce (1989), para la vegetación actual (VA).

Cubierta actual de la zona	Tabla Ponce	Estado hidrológico	Nº curva (Grupo suelo B)	N° curva (Grupo suelo C
Bosque nativo denso	Bosques	Bueno	55	70
Bosque nativo semidenso	Matorral, mezcla de matorral y maleza siendo el matorral el elemento prioritario	Medio	56	70
Matorral abierto	Matorral, mezcla de matorral y maleza siendo el matorral el elemento prioritario	Malo	67	77
Matorral semidenso	Matorral, mezcla de matorral y maleza siendo el matorral el elemento prioritario	Medio	56	70
Matorral arborescente abierto	Matorral, mezcla de matorral y maleza siendo el matorral el elemento prioritario	Malo	67	77
Matorral arborescente semidenso	Matorral, mezcla de matorral y maleza siendo el matorral el elemento prioritario	Medio	56	70
Matorral arborescente denso	Matorral, mezcla de matorral y maleza siendo el matorral el elemento prioritario	Bueno	48	65
Plantación	Bosques	Bueno	55	70
Plantación joven	Bosques	Media	60	73
Praderas anuales	Grano pequeño (SR)	Buena	75	83
Renoval abierto	Matorral, mezcla de matorral y maleza siendo el matorral el elemento prioritario	Malo	67	77
Renoval semidenso	Matorral, mezcla de matorral y maleza siendo el matorral el elemento prioritario	Medio	56	70
Renoval denso	Matorral, mezcla de matorral y maleza siendo el matorral el elemento prioritario	Bueno	48	65
Rotación cultivo-pradera	Sembrado en línea o pradera de rotación (SR)	Mala	77	85
Terrenos de uso agrícola	Cultivos densos de leguminosas R	Pobres	77	84

6.4. Número de Curva

El valor del Número de Curva ponderado (NCP) para los escenarios (VPCII), (VACII) y (VRCII), se presenta en las tablas N° 6, N° 7 y N° 8 respectivamente. Los tres escenarios fueron determinados para el suelo existente en la zona y en un estado de humedad en condiciones normales (condición II). El cálculo se obtuvo mediante una ponderación de los Números de Curva, con respecto al área de influencia de cada uno (ver Apéndice II).

Además, el Número de Curva para las condiciones I y III, que caracterizan a los otros 6 escenarios, se obtienen de la tabla N° 3, señalada en la metodología. En estas situaciones, se tuvo que interpolar para la obtención de sus valores.

Tabla Nº 6. Número de curva para el Segundo escenario VPCII (Vegetación plena, condición II).

Tipo de cobertura	Grupo de suelo	Área (Hás.)	NC veg. Actual	Pond. Veg. Plena
PINACEAS	В	1218,493	41	49958,213
PINACEAS	С	19744,220	61	1204397,42
TOTAL		20962,713		1254355,633
NCP		59,83746631		

NC: Número de curva

NCP: Número de curva ponderado

Pond. Veg. Plena: Ponderación vegetación

olena

Fuente: Elaboración propia.

Tabla N° 7. Número de curva para el Quinto escenario VACII (Vegetación actual, condición II).

Tipo de cobertura	Grupo de suelo	Área (Hás.)	NC Vegetación Actual	Ponderación Vegetación Actual
Bosque nativo- exótica asilvestrado denso	С	2,504	70	175,28
Bosque nativo- exótica asilvestrado semidenso	С	56,133	70	3929,31
Bosque nativo- plantación semidenso	С	96,757	70	6772,99
Matorral abierto	В	86,223	67	5776,941
Matorral abierto	С	1128,007	77	86856,539
Matorral arborescente abierto	В	19,602	67	1313,334
Matorral arborescente abierto	С	47,127	77	3628,779
Matorral arborescente denso	С	23,710	65	1541,15
Matorral arborescente semidenso	В	149,919	56	8395,464
Matorral arborescente semidenso	С	1223,872	70	85671,04
Matorral semidenso	В	136,313	56	7633,528
Matorral semidenso	С	1478,252	70	103477,64
Plantación	В	220,703	55	12138,665
Plantación	С	7977,452	70	558421,64
Plantación joven	В	202,934	60	12176,04
Plantación joven	С	4141,157	73	302304,461
Praderas anuales	В	54,074	75	4055,55
Praderas anuales	С	86,163	83	7151,529
Renoval abierto	В	16,747	67	1122,049
Renoval abierto	С	108,458	77	8351,266
Renoval denso	В	4,975	48	238,8
Renoval denso	C	654,874	65	42566,81
Renoval semidenso	С	61,500	70	4305
Rotación cultivo- pradera	В	283,993	77	21867,461
Rotación cultivo- pradera	C	2533,157	85	215318,345
Terrenos de uso agrícola	В	43,010	77	3311,77
Terrenos de uso agrícola	С	125,097	84	10508,148
TOTAL		20962,713		1519009,529
NCP	1	72,462449		

NC: Número de curva

NCP: Número de curva ponderado

Fuente: Elaboración propia.

Tabla Nº 8. Número de curva para el Octavo escenario VRCII (Vegetación rala,

condición II).

Tipo de cobertura	Grupo de suelo	Área (Hás.)	NC veg. Actual	Pond. Veg. Rala
MATORRAL ABIERTO	В	1218,493	67	81639,031
MATORRAL ABIERTO	С	19744,220	77	1520304,94
TOTAL		20962,713		1601943,971
NCP		76,41873316		

NC: Número de curva

NCP: Número de curva ponderado Pond Veg Rala : Ponderación vegetación

rala

Fuente: Elaboración propia.

En la Tabla N° 9, se muestra el resumen de los números de curva y el valor que representa la máxima infiltración (S), determinados para los 9 escenarios planteados en este estudio. Al igual que en los casos anteriores, el detalle de la obtención del valor S se describe en los Apéndices, específicamente en el Apéndice III.

Tabla Nº 9. Resumen de los Números de curva y el valor de S para los 9 escenarios.

Vegetación	Condición del estado de humedad previa						
	I		I II		III		
	NC	S (mm)	NC	S (mm)	NC	S (mm)	
Plena	39,83	383,71	59,83	170,54	78,86	68,09	
Actual	53,95	216,81	72,46	96,54	88,97	31,49	
Rala	58,70	178,71	76,42	78,37	91,85	22,54	

NC: Número de curva S: Máxima infiltración

Fuente: Elaboración Propia.

6.5- Coeficiente de escorrentía

Una vez obtenido el Número de curva, se llevó a cabo el cálculo del coeficiente de escorrentía, en donde hubo que determinar previamente la escorrentía superficial y las precipitaciones efectivas en cada uno de los intervalos de precipitación, mediante las fórmulas entregadas en la metodología. Luego, para efectos de este estudio, se determinaron los valores en intervalos de 1, 2 y 4 horas de las 30 tormentas seleccionadas (15 de alta intensidad y 15 de baja intensidad) y para los diversos escenarios. En el Apéndice IV, se puede apreciar en detalle el cálculo de las precipitaciones efectivas.

Posteriormente, se estimaron los coeficientes de escorrentía instantáneos para los 9 escenarios planteados y para las tormentas tanto de alta como de baja intensidad. Los resultados se muestran en la tabla N° 10, para intervalos de 1 hora; en la tabla N° 11 para intervalos de 2 horas; y en la tabla N° 12, para intervalos de 4 horas. El cálculo en detalle de estos valores se encuentra en el Apéndice V.

Tabla Nº 10. Tabla sinóptica del Coeficiente de escorrentía, para intervalos de 1 hora.

	Intensidad	Rango de variación del coeficiente de escorrentía para la			
Tipo de	de tormenta		Condición		
vegetación		I	II	III	
Plena	Alta	$0,0002 \le C \le 0,233$	$1E-05 \le C \le 0,594$	$5E-05 \le C \le 0,866$	
	Baja	-	•	$0,0002 \le C \le 0,222$	
Actual	Alta	$3E-06 \le C \le 0,494$	$0,0005 \le C \le 0,786$	$0,0002 \le C \le 0,959$	
	Baja	-	$0,001 \le C \le 0,067$	$2E-07 \le C \le 0.568$	
Rala	Alta	$0,0001 \le C \le 0,575$	$9E-06 \le C \le 0.837$	8E-05 ≤C ≤0,977	
	Baja	-	$0,0001 \le C \le 0,158$	0,0009 ≤C ≤0,694	

(-) sin escorrentía (Fuente: Elaboración propia).

Tabla N°11. Tabla sinóptica del Coeficiente de escorrentía, para intervalos de 2 horas.

	Intensidad	Rango de variación del coeficiente de escorrentía para la			
Tipo de	de tormenta		Condición		
vegetación		I	II	III	
Plena	Alta	_	$0,0003 \le C \le 0,276$	$6E-06 \le C \le 0,67$	
	Baja	-	-	-	
Actual	Alta	3E-05 ≤C ≤0,166	$0,0005 \le C \le 0,533$	$0.0002 \le C \le 0.875$	
	Baja	_	-	$0,006 \le C \le 0,244$	
Rala	Alta	$0.0008 \le C \le 0.254$	$0.002 \le C \le 0.617$	0,0003 ≤C ≤0,924	
	Baja	-	-	0,001 ≤C ≤0,398	

⁽⁻⁾ sin escorrentía (Fuente: Elaboración Propia).

Tabla N°12. Tabla sinóptica del Coeficiente de escorrentía, para intervalos de 4 horas.

	Intensidad	Rango de variación del coeficiente de escorrentía para la			
Tipo de	de tormenta	_	Condición		
vegetación		I	II	III	
Plena	Alta	-	-	$3E-05 \le C \le 0.306$	
	Baja	-	-	-	
Actual	Alta	-	$5E-05 \le C \le 0,147$	$0,0003 \le C \le 0,638$	
	Baja	<u>-</u>	-	-	
Rala	Alta	-	$2E-05 \le C \le 0,241$	$0,0003 \le C \le 0,751$	
	Baja	<u>-</u>	-	0,006 ≤C ≤0,078	

⁽⁻⁾ sin escorrentía (Fuente: Elaboración Propia).

En forma abreviada y a modo de mostrar los resultados obtenidos, se presenta a continuación la tabla N° 13, que muestra el comportamiento del Coeficiente de escorrentía en el tiempo, para la tormenta N° 13 de alta intensidad, en la condición III y para las 3 situaciones de vegetación. Las tablas del Coeficiente de escorrentía correspondientes a todas las tormentas, se presentan en el Apéndice V.

Tabla Nº 13. Coeficiente de escorrentía para la tormenta Nº 13 (alta intensidad).

Hora	Coeficiente de escorren	tía para la Condición de Vegetación:	humedad III y para una
	Plena	Actual	Rala
08:00 a.m.			
09:00 a.m.			
10:00 a.m.			
11:00 a.m.			
12.00 p.m.			
01:00 p.m.			
02:00 p.m.			
03:00 p.m.			
04.00 p.m.		0,0087	0,0991
05:00 p.m.		0,1301	0,2818
06.00 p.m.	0,002	0,2883	0,4412
07:00 p.m.	0,0875	0,4371	0,5804
08:00 p.m.	0,176	0,5257	0,6584
09:00 p.m.	0,2656	0,6055	0,7247
10:00 p.m.	0,3393	0,6659	0,7731
11:00 p.m.	0,4192	0,7246	0,8179
12:00 a.m.	0,5214	0,7924	0,8675
01:00 a.m.	0,6032	0,8401	0,9009
02:00 a.m.	0,6661	0,8735	0,9233
03:00 a.m.	0,7127	0,8962	0,938
04:00 a.m.	0,752	0,9141	0,9495
05:00 a.m.	0,7947	0,9322	0,9607
06:00 a.m.	0,8366	0,9488	0,9708
07.00 a.m.	0,8589	0,9571	0,9758
08:00 a.m.	0,8656	0,9595	0,9772

Fuente: Elaboración propia.

6.6. Coeficiente de escorrentía en función del Manual de Carreteras

En lo que respecta al coeficiente de escorrentía, determinado según la tabla del Manual de Carreteras, se calculó en primer lugar la pendiente media de Mociornita de la zona, dando como resultado un porcentaje de 28, 6 %. El detalle del cálculo se muestra en el Apéndice VI.

Además, en la tabla N° 14 se muestran los valores para K, en cada una de las características de la cuenca según el Manual de Carreteras, dando un coeficiente de escorrentía para la zona de 0.70.

Tabla Nº 14. Características para la cuenca del Tutuvén según Manual de Carreteras

	Característica de la cuenca	K
Relieve del terreno (K ₁)	Accidentado, pendiente 28,6%	30
Permeabilidad del suelo (K ₂)	Bastante impermeable, franco arcilloso y franco arenoso	15
Vegetación (K ₃)	Bastante, hasta el 50 % de la superficie	10
Capacidad de almacenaje de agua (K ₄)	Poca	15
Kt = 70	Kt: valor total de K	
C = 0.70	C : coeficiente de escorrentía	

6.7. Resultados y análisis estadísticos para la estimación del Coeficiente de escorrentía

Para generar los modelos de los 9 escenarios planteados, se utilizó la información que muestra la tabla N° 15, en donde se entregan los coeficientes de escorrentía máximos horarios de 30 tormentas, para distintos montos de precipitación.

Tabla Nº 15. Coeficientes de escorrentía máximos para las 30 tormentas.

Tormenta	Monto total de			C	oeficiente	de escorre	ntía máxin	no		
	precipitación (mm)	VPCI	VPCII	VPCIII	VACI	VACII	VACIII	VRCI	VRCII	VRCIII
1	62	0	0,261	0,6579	0,1517	0,5189	0,8694	0,2394	0,6047	0,9206
2	76,3	0	0,3403	0,7169	0,2294	0,5899	0,8982	0,3186	0,6689	0,9394
3	62,9	0	0,2819	0,6507	0,1429	0,5104	0,8657	0,2307	0,5968	0,9181
4	70,1	0	0,3175	0,7008	0,2069	0,5701	0,8906	0,2958	0,6518	0,9345
5	87,6	0,0538	0,42	0,7699	0,3097	0,6566	0,9219	0,3987	0,7277	0,9544
6	63,5	0	0,268	0,6635	0,1585	0,5254	0,8722	0,2464	0,6106	0,9224
7	74,5	0	0,337	0,7124	0,2227	0,5842	0,8961	0,312	0,6639	0,9379
8	71,6	0	0,3195	0,7022	0,2088	0,5718	0,8912	0,2978	0,6527	0,9349
9	48,2	0	0,1132	0,528	0,0151	0,3726	0,7965	0,0929	0,4669	0,8705
10	50,5	0	0,1668	0,5785	0,0619	0,4279	0,8265	0,1459	0,5198	0,8915
11	56,2	0	0,2158	0,6211	0,1083	0,4761	0,8501	0,1945	0,5651	0,9077
12	69,4	0	0,2796	0,6722	0,1698	0,5358	0,8765	0,2579	0,6201	0,9253
13	132,4	0,2333	0,5941	0,8656	0,4937	0,7856	0,9595	0,5753	0,8367	0,9772
14	77,1	0,0016	0,3618	0,7319	0,2509	0,6085	0,9051	0,3403	0,6855	0,9438
15	52,3	0	0,1822	0,5922	0,0764	0,4432	0,8342	0,1611	0,5343	0,8969
16	5,9	0	0	0	0	0	0	0	0	0,0941
17	9	0	0	0	0	0	0,1341	0	0	0,2863
18	12	0	0	0	0	0	0,2793	0	0	0,4327
19	11,3	0	0	0	0	0	0,2513	0	0	0,4055
20	11,8	0	0	0	0	0	0,2634	0	0	0,4174
21	22	0	0	0,2019	0	0,0487	0,5499	0	0,1387	0,6789
22	15	0	0	0,038	0	0	0,3846	0	0	0,5329
23	23,1	0	0	0,2215	0	0,0667	0,5676	0	0,1577	0,6938
24	16,2	0	0	0,0611	0	0	0,4098	0	0,0044	0,5561
25	24,1	0	0	0,2087	0	0,0551	0,5558	0	0,1453	0,6838
26	10,1	0	0	0	0	0	0,2016	0	0	0,3558
27	15,1	0	0	0,0394	0	0	0,3861	0	0	0,5344
28	11,4	0	0	0	0	0	0,2574	0	0	0,4115
29	7,5	0	0	0	0	0	0,0665	0	0	0,2145
30	8,9	0	0	0	0	0	0,1443	0	0	0,2969

Para el único escenario que no se determinó un modelo, fue para el Primer escenario VPCI, dado que en la práctica no hubo escorrentía.

> Modelo generado para el Segundo escenario VPCII

$$Y = 0.00520673X - 0.0697121$$

Tabla Nº 16. Análisis de regresión.

Variable Dep	endiente: Y	Variable Independiente: X			
Parámetro	Estimación Error Estánda		Estadístico-t	Valor- p	
Intercepto	-0,0697121	0,008612548	-8,0915	0,0000	
Pendiente	0,00520673	0,000163613	31,8234	0,0000	

Tabla Nº 17. Análisis de Varianza.

1 667166 1 1					
Fuente	Suma de Cuadrados	g.l.	C.Medios	F	Valor-p
Modelo	0,825028	1	0,825028	1012,73	0,0000
Residual	0,0228104	28	0,000814658		
Total	0,847839	29			

Coeficiente de Determinación R² : 97,32 %

Error Estándar de Estimación : 0,02854

Estadístico Durbin- Watson : 1,57

Del análisis de varianza, se verifica la tendencia lineal entre las variables. Adicionalmente, se entrega el análisis de correlación del modelo, proporcionando el coeficiente de determinación, el error estándar de estimación y el estadístico Durbin-Watson.

Como en todo modelo de regresión lineal, se hace necesario probar los supuestos básicos de regresión, a saber, normalidad, homocedasticidad y no-autocorrelación (ver Apéndice VII).

• Normalidad : Se cumple.

• Homocedasticidad : Se cumple.

• No-autocorrelación : Se cumple.

Posteriormente, reemplazando las variables en el modelo final, se obtiene una función matemática que permite estimar los coeficientes de escorrentía, para una vegetación plena y en una condición de humedad II.

Donde:

C = Coeficiente de escorrentía.

P = Precipitaciones en 24 horas (mm).

> Modelo generado para el Tercer escenario VPCIII

$$Y = 0.126156\sqrt{X} - 0.387769$$

Tabla Nº 18. Análisis de regresión.

Variable Dependiente: Y Variable Independiente:				iente: X
Parámetro	Estimación	Error Estándar	Estadístico-t	Valor- p
Intercepto	-0,387769	0,0266954	-14,5257	0,0000
Pendiente	0,126146	0,00412247	30,6022	0,0000

Tabla Nº 19. Análisis de Varianza.

Fuente	Suma de Cuadrados	g.1.	C.Medios	F	Valor-p
Modelo	3,04528	1	3,04528	936,49	0,0000
Residual	0,0910504	28	0,0032518		
Total	3,13633	29			

Coeficiente de Determinación :

: 96,99 %

Error Estándar de Estimación

: 0,0570245

Estadístico Durbin- Watson

: 1,56

Del análisis de varianza, se verifica la tendencia lineal entre las variables. Adicionalmente, se entrega el análisis de correlación del modelo, proporcionando el coeficiente de determinación, el error estándar de estimación y el estadístico Durbin – Watson.

Como en todo modelo de regresión lineal, se hace necesario probar los supuestos básicos de regresión, a saber, normalidad, homocedasticidad y no-autocorrelación (ver Apéndice VIII).

Normalidad

Se cumple.

Homocedasticidad

Se cumple.

No-autocorrelación

Se cumple.

Posteriormente, reemplazando las variables en el modelo final y aplicando raíz cuadrada, se obtiene una función matemática que permite estimar los Coeficientes de escorrentía para un escenario con una vegetación plena y en una condición de humedad III.

$$C = 0.126146\sqrt{P} - 0.387769$$

Donde:

C = Coeficiente de escorrentía.

P = Precipitación en 24 horas (mm).

> Modelo generado para el Cuarto escenario VACI

$$Y = 0.00367608X - 0.0605934$$

Tabla Nº 20. Análisis de regresión.

Variable Dependiente: Y Variable Independent				iente: X
Parámetro	Estimación	Error Estándar	Estadístico-t	Valor- p
Intercepto	-0,0605934	0,0108842	-5,56712	0,0000
Pendiente	0,00367608	0,000206697	17,7849	0,0000

Tabla Nº 21. Análisis de Varianza.

Fuente	Suma de Cuadrados	g.1.	C.Medios	F	Valor-p
Modelo	0,411252	1	0,411252	316,20	0,0000
Residual	0,0364952	28	0,00130019		
Total	0,447657	29			

Coeficiente de Determinación : 91,58 %

Error Estándar de Estimación : 0,0360581

Estadístico Durbin-Watson : 0,52

Del análisis de varianza, se verifica la tendencia lineal entre las variables. Adicionalmente, se entrega el análisis de correlación del modelo, proporcionando el coeficiente de determinación, el error estándar de estimación y el estadístico Durbin-Watson.

Como en todo modelo de regresión lineal, se hace necesario probar los supuestos básicos de regresión, a saber, normalidad, homocedasticidad y no-autocorrelación (ver Apéndice IX).

Normalidad : Se cumple.

Homocedasticidad : Se cumple.

No-autocorrelación : Se cumple.

Posteriormente, reemplazando las variables en el modelo final, se obtiene una función matemática que permite estimar los Coeficientes de escorrentía para la vegetación existente en el sector y en una condición de humedad I.

$$C = 0.00367608P - 0.0605934$$

Donde:

C = Coeficiente de escorrentía.

P = Precipitación en 24 horas (mm).

> Modelo generado para el Quinto escenario VACII

$$Y = (0.0104331P - 0.0459641)^2$$

Tabla N° 22. Análisis de regresión.

Variable Dependiente: Y Variable Independient				
Parámetro	Estimación	Error Estándar	Estadístico-t	Valor- p
Intercepto	-0,0459641	0,0376706	-1,22016	0,2326
Pendiente	0,0104331	0,000715387	14,5838	0,0000

Tabla N° 23. Análisis de Varianza.

Fuente	Suma de Cuadrados	g.1.	C.Medios	F	Valor-p
Modelo	3,31255	1	3,31255	212,69	0,0000
Residual	0,436093	28	0,0155748		
Total	3,74865	29			

Coeficiente de Determinación : 94,33 %

Error Estándar de Estimación : 0,0680064

Estadístico Durbin- Watson : 1,73

Del análisis de varianza, se verifica la tendencia lineal entre las variables. Adicionalmente, se entrega el análisis de correlación del modelo, proporcionando el coeficiente de determinación, el error estándar de estimación y el estadístico Durbin-Watson.

Como en todo modelo de regresión lineal, se hace necesario probar los supuestos básicos de regresión, a saber, normalidad, homocedasticidad y no-autocorrelación (ver Apéndice X).

• Normalidad : Se cumple.

• Homocedasticidad : Se cumple.

• No-autocorrelación : Se cumple.

Posteriormente, reemplazando las variables en el modelo final, se obtiene una función matemática que permite estimar los Coeficientes de escorrentía para la vegetación existente en el sector y para una condición de humedad II.

$$C = (0.0104331P - 0.0459641)^2$$

Donde:

C = Coeficiente de escorrentía.

P = Precipitación en 24 horas (mm).

> Modelo generado para el Sexto escenario VACIII

$$Y = 0.344158 LOGX - 0.574467$$

Tabla N° 24. Análisis de regresión.

Variable Dependiente: Y Variable Independient					
Parámetro	Estimación Error Están		Estadístico-t	Valor- p	
Intercepto	-0,574467	0,0302963	-18,9617	0,0000	
Pendiente	0,344158	0,00866966	39,6968	0,0000	

Tabla N° 25. Análisis de Varianza.

Fuente	Suma de Cuadrados	g.1.	C.Medios	F	Valor-p
Modelo	2,93255	1	2,93255	157,84	0,0000
Residual	0,052165	28	0,00186095		
Total	2,984715	29			

Coeficiente de Determinación : 98,19 %

Error Estándar de Estimación : 0,031

Estadístico Durbin-Watson : 1,57

Del análisis de varianza, se verifica la tendencia lineal entre las variables. Adicionalmente, se entrega el análisis de correlación del modelo, proporcionando el coeficiente de determinación, el error estándar de estimación y el estadístico Durbin-Watson.

Como en todo modelo de regresión lineal, se hace necesario probar los supuestos básicos de regresión, a saber, normalidad, homocedasticidad y no-autocorrelación (ver Apéndice XI).

Normalidad : Se cumple.
Homocedasticidad : Se cumple.
No-autocorrelación : Se cumple.

Posteriormente, reemplazando las variables en el modelo final y aplicando antilogaritmo, se obtiene una función matemática que permite estimar los Coeficientes de escorrentía para la vegetación existente en el sector y para una condición de humedad III.

$$C = 0.344158 \text{ LOG P} - 0.574467$$

Donde:

C = Coeficiente de escorrentía.

P = Precipitación en 24 horas (mm)

> Modelo generado para el Séptimo escenario VRCI

$$Y = 0.00488989X - 0.0681395$$

Tabla Nº 26. Análisis de regresión.

Variable Dep	endiente: Y	Variable Independiente: X			
Parámetro	Estimación	Error Estándar	Estadístico-t	Valor- p	
Intercepto	-0,0681395	0,00850395	-8,012169	0,0000	
Pendiente	0,00488989	0,000161495	30,2789	0,0000	

Tabla Nº 27. Análisis de Varianza.

Fuente	Suma de Cuadrados	g.l.	C.Medios	F	Valor-p
Modelo	0,727675	1	0,727675	916.81	0,0000
Residual	0,0222237	28	0.000793703		
Total	0,749899	29			

Coeficiente de Determinación : 96,93 %

Error Estándar de Estimación : 0,0281727

Estadístico Durbin-Watson : 1,66

Del análisis de varianza, se verifica la tendencia lineal entre las variables. Adicionalmente, se entrega el análisis de correlación del modelo, proporcionando el coeficiente de determinación, el error estándar de estimación y el estadístico Durbin-Watson.

Como en todo modelo de regresión lineal, se hace necesario probar los supuestos básicos de regresión, a saber, normalidad, homocedasticidad y no-autocorrelación (ver Apéndice XII).

Normalidad

Se cumple.

Homocedasticidad

Se cumple.

No-autocorrelación

Se cumple.

Posteriormente, reemplazando las variables en el modelo final, se obtiene una función matemática que permite estimar los Coeficientes de escorrentía para la vegetación escasa y para una condición de humedad I.

$$C = 0.00488989P - 0.0681395$$

Donde:

C = Coeficiente de escorrentía.

P = Precipitación en 24 horas (mm)

> Modelo generado para el Octavo escenario VRCII

$$Y = (0.0107717 P - 0.016137)^2$$

Tabla Nº 28. Análisis de regresión.

Variable Dep	endiente: Y		Variable Independ	iente: X
Parámetro	Estimación	Error Estándar	Estadístico-t	Valor- p
Intercepto	-0,016137	0,0452517	-0,356606	0,7241
Pendiente	0,0107717	0,000859357	12,5346	0,0000

Tabla N° 29. Análisis de Varianza.

Fuente	Suma de Cuadrados	g.1.	C.Medios	F	Valor-p
Modelo	3,53106	1	3,53106	157,12	0,0000
Residual	0,629281	28	0,0224743		·
Total	4,16035	29			

Coeficiente de Determinación : 84,33 %

Error Estándar de Estimación : 0,1499

Estadístico Durbin- Watson : 1,90

Del análisis de varianza, se verifica la tendencia lineal entre las variables. Adicionalmente, se entrega el análisis de correlación del modelo, proporcionando el coeficiente de determinación, el error estándar de estimación y el estadístico Durbin-Watson.

Como en todo modelo de regresión lineal, se hace necesario probar los supuestos básicos de regresión, a saber, normalidad, homocedasticidad y no-autocorrelación (ver Apéndice XIII).

Normalidad : Se cumple.

• Homocedasticidad : Se cumple.

• No-autocorrelación : Se cumple.

Posteriormente, reemplazando las variables en el modelo final y aplicando raíz cuadrada a la variable independiente, se obtiene una función matemática que permite estimar los Coeficientes de escorrentía para una vegetación escasa y para una condición de humedad II.

$$C = (0.629281 P - 0.016137)^2$$

Donde:

C = Coeficiente de escorrentía.

P = Precipitación en 24 horas (mm)

> Modelo generado para el Noveno escenario VRCIII

$$Y = 0.0798527 + 0.101038\sqrt{X}$$

Tabla Nº 30. Análisis de regresión.

Variable Dep	endiente: Y		Variable Independ	iente: X
Parámetro	Estimación	Error Estándar	Estadístico-t	Valor- p
Intercepto	0,0798527	0,0450661	1,7719	0,0873
Pendiente	0,101038	0,00695937	14,5182	0,0000

Tabla Nº 31. Análisis de Varianza.

Fuente	Suma de Cuadrados	g.1.	C.Medios	F	Valor-p
Modelo	2,13308	1	2,13308	749,01	0,0000
Residual	0,0797403	28	0,00284787		
Total	2,21282	29			

Coeficiente de Determinación : 87,85 %

Error Estándar de Estimación : 0,096

Estadístico Durbin-Watson : 1,57

Del análisis de varianza, se verifica la tendencia lineal entre las variables. Adicionalmente, se entrega el análisis de correlación del modelo, proporcionando el coeficiente de determinación, el error estándar de estimación y el estadístico Durbin – Watson.

Como en todo modelo de regresión lineal, se hace necesario probar los supuestos básicos de regresión, a saber, normalidad, homocedasticidad y no-autocorrelación (ver Apéndice XIV).

Normalidad : Se cumple.

• Homocedasticidad : Se cumple.

No-autocorrelación : Se cumple.

Posteriormente, reemplazando las variables en el modelo final y aplicando raíz cuadrada a la variable independiente, se obtiene una función matemática que permite estimar los Coeficientes de escorrentía para una vegetación escasa y para una condición de humedad III.

$$C = 0.0798527 + 0.101038\sqrt{P}$$

Donde:

C = Coeficiente de escorrentía.

P = Precipitación en 24 horas (mm)

6.8. Medidas de bondad de ajuste

Una vez ajustados los modelos para cada escenario, se probaron las medidas de bondad de ajuste; una corresponde al coeficiente de determinación (R²) y la otra al Error Estándar de estimación (EEE), ambos utilizados para validar los modelos obtenidos para cada escenario. Una tabla resumen, que contiene los modelos propuestos para obtener los coeficientes de escorrentía y para cada escenario planteado, así como también la prueba de bondad de ajuste, se da a conocer en la tabla N° 32.

Tabla Nº 32. Modelos ajustados para cada escenario planteado.

Escenario	Modelo	R^2	EEE
VPCII	C = 0,00520673 P - 0,0697121	97,32%	0,0285
VPCIII	$C = 0,126146\sqrt{P} - 0,387769$	96,99 %	0,057
VACI	C = 0.00367608P - 0.0605934	91,58 %	0,036
VACII	$C = (0.0104331 P - 0.0459641)^2$	87,95 %	0,090
VACIII	C = 0.344158 LOG P - 0.574467	98,19 %	0,031
VRCI	C = 0.00488989P - 0.0681395	96,93 %	0,0281
VRCII	$C = (0.0107717 P - 0.016137)^2$	84,33 %	0,149
VRCIII	$C = 0,0798527 + 0,101038\sqrt{P}$	87,85 %	0,096

Donde:

C: Coeficiente de escorrentía, para un monto de precipitación P.

P: Monto de precipitación en 24 horas (mm).

R²: Coeficiente de determinación de cada modelo.

EEE: Error Estándar de estimación de cada modelo.

7. ANÁLISIS DE RESULTADOS

7.1. Selección de las tormentas

En este proceso se presentaron algunos problemas asociados a causas externas que pueden alterar los registros, por manipulación de ellos o interpretación de los mismos. De esta manera, el problema se presentó en cuanto al funcionamiento en algunos tramos de la línea en que se registra el pluviograma, ya que ésta presentaba un grosor que complicaba la lectura clara del registro.

De los resultados presentados, se determina que la tormenta N° 13 perteneciente al Noveno escenario (VRCIII) registró el mayor coeficiente de escorrentía instantáneo de las tormentas de alta intensidad. Es así como, para intervalos de 1 hora, el coeficiente de escorrentía mayor tuvo un valor de 0,9772 (ver Apéndice V, Tabla N° 9); para intervalos de 2 horas tuvo un valor de 0,924 (ver Apéndice V, Tabla N° 22); y para intervalos de 4 horas, un valor de 0,238 (ver Apéndice V, Tabla N° 28)

En el caso de las tormentas de baja intensidad, el coeficiente de escorrentía instantáneo mayor fue determinado para la tormenta N° 8, correspondiente al Noveno escenario (VRCIII). De esta manera, para intervalos de 1 hora, el coeficiente de escorrentía mayor fue de 0,6838 (ver Apéndice V, Tabla N° 14), para intervalos de 2 horas y 4 horas tuvo un valor de 0,398 y 0,078, respectivamente (ver Apéndice V, Tablas N° 24 y N° 30, respectivamente).

7.2. Situaciones de vegetación

La situación de vegetación rala (VR), correspondiente a una cubierta de Matorral abierto, en condiciones hidrológicas malas, presentó las mayores escorrentías. Le sigue la situación actual de vegetación (VA); es decir, la existente en el sector, la cual provocó las escorrentías intermedias. Por último, las menores escorrentías fueron determinadas para la

situación de vegetación plena (VP) que, para este caso, corresponde a una cubierta de Pinaceas en un estado hidrológico bueno.

En la tabla N° 4, capítulo 6, se puede observar que la vegetación que existe en la zona de estudio, fue clasificada dentro de los tipos de cobertura determinados según las tablas de Ponce (ver Anexo I). Además, se tomó en cuenta que el número de curva tuviera relación con la mayor o menor escorrentía provocada según el tipo de vegetación, como se señala en la revisión bibliográfica; cuanto más denso es el cultivo, menor es el número de curva representativo de la escorrentía.

Es así como, los matorrales y matorrales arborescentes fueron seleccionados dentro del tipo Matorral, como elemento prioritario. Los Bosques nativos-exóticos y Plantaciones, fueron clasificados dentro del tipo de cobertura de Bosques, determinados principalmente por tener una mayor cobertura de intercepción y por la mayor capacidad de infiltración que producen; por ende, les cabe la asignación de un menor número de curva representativo de la escorrentía.

Las Praderas anuales, Rotación cultivo-pradera y los Terrenos de uso agrícola, fueron clasificados bajo el tipo Grano pequeño, Sembrado en línea o pradera de rotación (hileras rectas (SR)) y cultivos densos de leguminosas, respectivamente. Estos usos del suelo presentan una baja cobertura de intercepción, la que favorece las escorrentías superficiales.

7.3. Número de Curva con respecto a los escenarios planteados

De los 9 escenarios planteados en el estudio, los que presentaron los mayores números de curva (NC) fueron los escenarios que se encontraban en la condición de humedad III. Dentro de estos, el Noveno escenario (VRCIII) fue el que registró el mayor valor (91,85); a su vez, este resultado provocó una disminución en la máxima infiltración

(S) (22,54 mm), lo que se explica por una situación de mínima vegetación planteada y además, se encontraba en una condición húmeda, es decir, el suelo estaba saturado.

En la condición de humedad II, se encontraron los valores intermedios y estos correspondieron, en orden correlativo de menor a mayor, para el Segundo escenario (VPCII), con un NC = 59,83 y S = 170,84 mm; el Quinto escenario (VACII), con un NC = 72,46 y S = 96.54 mm; y el Octavo escenario (VRCII), con un NC = 76,42 y S = 78,37 mm (ver tablas N° 6, N° 7 y N° 8, respectivamente).

Por otra parte, los menores NC fueron estimados para condición de humedad I, siendo el Primer escenario (VPCI), el que registró el valor menor (39,83). Lo anterior, se debió a la situación planteada en el estudio, correspondiente a las Pinaceas, cuya cobertura y condición de suelo seco provocó un aumento a 383,71 mm en la máxima infiltración.

7.4. Coeficiente de escorrentía

Como se mencionó en capítulos anteriores, previo al cálculo del coeficiente de escorrentía, se determinó la precipitación efectiva (Pe). Ésta, al compararla con las intensidades de precipitación horaria, denotó una distribución lógica. Es decir un aumento de la intensidad de precipitación a una hora determinada, provocó un aumento de la Pe y viceversa.

7.4.1. Tormentas de alta intensidad

En las figuras N°9 y N° 10, se puede ver una clara tendencia al aumento en el comportamiento de las escorrentías, a medida que las intensidades aumentan, siendo las tormentas N° 13 y N° 5, aquellas que presentaron los valores más altos en los 9 escenarios planteados. Esto se debe a que el umbral crítico de escorrentía, es superado rápidamente en esta tormenta al ocurrir una intensidad de precipitación alta.

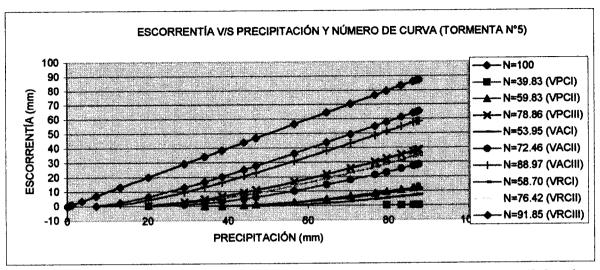


Figura Nº 9. Escorrentías, v/s precipitación y número de curva para la tormenta Nº 5 en los 9 escenarios planteados.

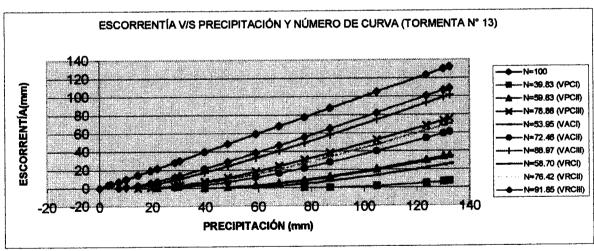


Figura Nº 10. Escorrentías, v/s precipitación y número de curva para la tormenta Nº 13 en los 9 escenarios planteados.

Para intervalos de 1 hora, se puede observar que los coeficientes de escorrentía (ver figura N° 11 y N° 12) fueron mayores para el noveno escenario VRCIII, en donde el promedio neto mayor de los coeficientes fue de 0,804 para la tormenta N° 5 y 0,7553 para la tormenta N° 13. Sin embargo, el coeficiente de escorrentía instantáneo mayor fue de 0,9772, para la tormenta N° 13 a las 8: 00 a.m. y 0,9544 para la tormenta N° 5, también a las 08:00 a.m. (ver Apéndice V, Tabla N° 9). El mayor valor del coeficiente de escorrentía instantáneo generado en la tormenta N° 13, se debe a que las intensidades fueron demasiado altas entre las 5:00 a.m. y 6:00 a.m. (17,7 mm y 18,7 mm, respectivamente). Estos montos se verifican al finalizar el aguacero y cuando los suelos se encuentran saturados, lo que explica la generación del alto nivel de escorrentía.

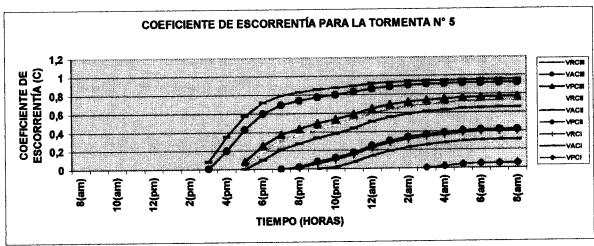


Figura Nº 11. Coeficiente de escorrentía para los 9 escenarios planteados.

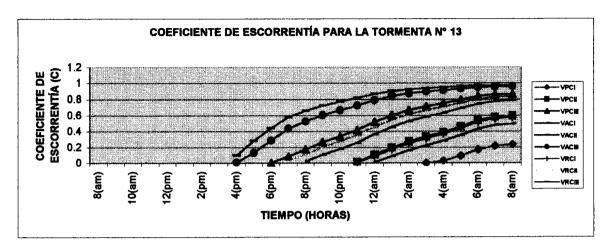


Figura Nº 12. Coeficiente de escorrentía para los 9 escenarios planteados.

Para el caso de los coeficientes de escorrentía instantáneos determinados para intervalos de 2 horas, se puede observar que sólo se presentaron escorrentías en 8 escenarios. Es así como, el Primer escenario VPCI no alcanzó a superar el umbral crítico de escorrentía (Io), lo que se explica, por las menores intensidades.

Por otra parte, los coeficientes de escorrentía, siguen la misma tendencia de los valores determinados para lapsos de 1 hora, es decir, los más altos, fueron los determinados en el Noveno escenario VRCIII. De esta manera, los promedios netos mayores se presentaron para la tormenta N° 5 y N° 13, cuyos valores fueron 0,725 y 0,709 respectivamente. Los mayores coeficientes de escorrentía, fueron determinados para la tormenta N° 13 y N° 5 a las 8: 00 a.m. y cuyos valores fueron de 0,924 y 0,867, respectivamente (ver Apéndice V, Tabla N° 22).

Para intervalos de 4 horas, sólo hubo escorrentía en 5 escenarios, siendo el Noveno escenario, VRCIII, al igual que en los casos anteriores, el que presentó los promedios netos mayores 0,476 para la tormenta N° 5 y 0,404 para la tormenta N° 13. Los coeficientes de escorrentía instantáneos mayores (0,749 y 0,672) se encontraron en la tormenta N° 13 y N° 5 respectivamente (ver Apéndice V, Tabla N° 29).

7.4.2. Tormentas de baja intensidad

Para este tipo de tormentas, sólo se generaron escorrentías en 5 escenarios; el resto de las situaciones no alcanzó a superar el umbral crítico de escorrentía.

Para los 5 escenarios planteados y para intervalos de 1 hora, los promedios netos más altos de los coeficientes se generaron para la tormenta N°8, y dentro de ésta, a las 8.00 a.m. se generó el mayor coeficiente de escorrentía instantáneo. Lo anteriormente expuesto, se puede observar en la figura N° 13, en donde las situaciones con un suelo húmedo fueron las que generaron los coeficientes de escorrentías mayores, no así en los casos en que el suelo estaba seco y en donde los valores fueron menores.

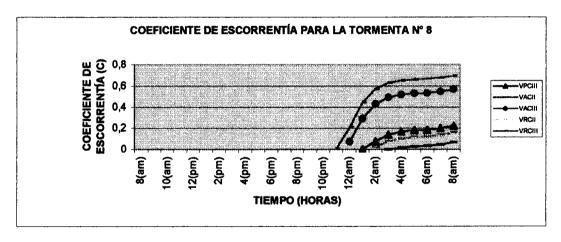


Figura Nº 13. Coeficiente de escorrentía para los 5 escenarios.

En este escenario, la situación que presentó el mayor valor fue la VRCIII con un promedio neto de 0,5207 y dentro de ésta, el coeficiente de escorrentía instantáneo más alto fue de 0,6938 (ver Apéndice V, Tabla N° 14).

En el caso de intervalos de 2 horas, solo se presentó escorrentía para 2 escenarios (VRCIII y VACIII), siendo el promedio neto mayor (0,259) para la VRCIII, encontrado en

la tormenta N° 8 y dentro de ésta, el mayor valor fue de 0,398 a las 08:00 a.m. (ver Apéndice V, Tabla N° 24).

Para intervalos de 4 horas, sólo se generó escorrentía en la VRCIII, por lo que el promedio neto mayor de los coeficientes de escorrentía fue de 0,042 en la tormenta N° 8 y dentro de ésta, el valor horario mayor fue de 0,078 a las 08:00 a.m. (ver Apéndice V, Tabla N° 30).

Al analizar los coeficientes de escorrentía de las 30 tormentas, se observa que en general, la situación más crítica de escorrentía se verifica para la VRCIII y para tormentas de alta intensidad, como era esperable.

A medida que la vegetación es más densa, las escorrentías son menores, ya que la vegetación juega un rol de interceptor del agua caída, demorando entonces la escorrentía superficial y favoreciendo a su vez la infiltración al hacer los suelos más porosos. Otro factor clave en la generación de escorrentía, es la humedad del suelo; si el suelo está saturado y a una determinada hora la intensidad de precipitación es alta, el umbral crítico de escorrentía se supera rápidamente, y ello no es así en un suelo seco, o en donde las precipitaciones han sido escasas.

Con respecto a los intervalos horarios, se encontró una clara disminución de los coeficientes de escorrentía a medida que aumentaron los lapsos; ésto se debió básicamente a la obtención de intensidades de precipitación menores.

7.5. Coeficiente de escorrentía en función del Manual de Carreteras

La determinación del coeficiente de escorrentía a través del Manual de Carreteras, muestra un cálculo de éste a grandes rasgos. Así por ejemplo, se determinó una pendiente media para toda la cuenca. En este sentido, la precipitación efectiva que se genera en cada

punto de la cuenca comienza su movimiento a favor de la máxima pendiente, dando lugar a la escorrentía superficial. Para este estudio, la pendiente media de Mociornita entregó un valor de 28,6%, lo que indica que la cuenca presenta un terreno accidentado, en donde las aguas tienen un menor tiempo de concentración en la red de drenaje y por ende las escorrentías son más rápidas.

En cuanto a la permeabilidad de la cuenca, ésta se determinó dentro de la categoría bastante impermeable, ya que los suelos que presentó la zona fueron franco arcillosos y franco arenosos. Esto significa que a menor permeabilidad del suelo, las escorrentías son mayores y viceversa.

La vegetación cumple también un papel fundamental, al ser un elemento interceptor y receptor de la lluvia caída; en este caso, correspondió a una cobertura de la zona de hasta un 50%, es decir, la zona presentó bastante vegetación, por lo que en cierto sentido las escorrentías son menores. Respecto a la capacidad de almacenaje de agua, ésta fue poca, por lo que escurrió más agua superficialmente.

Finalmente, el conjunto de las 4 características de la cuenca, determinó según el Manual de Carreteras, un coeficiente de escorrentía de 0,70 (ver tabla N° 14).

Comparando el coeficiente de escorrentía determinado en el Manual de carreteras (0,70), con los determinados en los 9 escenarios planteados, se puede apreciar que este valor está más cercano a las tormentas de alta intensidad y en los siguientes escenarios: VACII, VRCII, VPCIII, VACIII y VRCIII, y todas estas situaciones determinadas para lapsos de 1 hora (ver Apéndice V, tablas N°5, N° 8, N° 3, N° 6 y N° 9, respectivamente). Para intervalos de 2 horas, se encontraron valores cercanos al Sexto (VACIII) y Noveno (VRCIII) escenario; para intervalos de 4 horas, sólo para el Noveno escenario VRCIII se encontraron valores cercanos a los calculados por el Manual de Carreteras. Sin embargo, se debe señalar que en general, éste valor tiende a subestimar las condiciones extremas analizadas en este estudio.

Considerando que en la cuenca existe más del 50 % de vegetación, los coeficientes de escorrentía determinados en el Manual de Carreteras, indican que en su mayoría están inclinados a valores en donde los suelos presentan condiciones de humedad altas, es decir, para la condicón II y III, según Método del Número de Curva.

7.6. Modelo de Regresión lineal

Durante el desarrollo de este proceso, se estudiaron diversas variables para llegar a determinar el coeficiente de escorrentía. Es así como, la variable precipitación en 24 horas, fue la que presentó los modelos más adecuados.

Es importante señalar que para el Primer escenario (VPCI), no se determinó un modelo de regresión, ya que ninguno resultó ser óptimo; esto se debió básicamente, a la poca cantidad de datos de coeficientes de escorrentía obtenidos para este caso, y ello derivado de que en ese escenario prácticamente no hubo escorrentía.

Para los escenarios restantes, se estableció la calidad de los modelos y es así como, los supuestos de regresión se cumplieron gráfica y matemáticamente, éstos son Normalidad, Homocedasticidad y No-Autocorrelación.

En cuanto a las medidas de bondad de ajuste utilizadas, se puede señalar lo siguiente:

> Coeficiente de determinación R²

En la tabla N° 32, se puede apreciar que los valores para los diversos escenarios fluctúan en un rango de un 84,33 % como mínimo para el Octavo escenario (VRCII) y un máximo de 98,19 %, en el Sexto escenario (VACIII), lo que indica que los modelos propuestos son una buena estimación de los datos reales.

> Error estándar de estimación EEE

Los valores de este estadístico, fluctúan entre 0,028 como mínimo para el Séptimo escenario (VRCI) y 0,149 como máximo para el Octavo escenario (VRCII). En general, en los diversos escenarios planteados, fueron valores bajos, es decir, los modelos fueron adecuados (ver tabla N° 32).

8.- Conclusiones y Recomendaciones

8.1. Conclusiones

Considerando los objetivos planteados y en función de los resultados obtenidos, se establece lo siguiente:

- La metodología del Número de Curva, ofrece una interesante perspectiva para afrontar los estudios hidrológicos a partir de características físicas y geomorfológicas, en cuencas que carezcan de información fluviométrica.
- El estudio demostró que el comportamiento del coeficiente de escorrentía está determinado principalmente, por tres factores; la cobertura de vegetación, la humedad del suelo y la intensidad de precipitación, siendo ésta última la que más influye en su variación.
- En cuanto a la cobertura vegetacional, se puede concluir que, los mayores coeficientes de escorrentía generados, fueron para aquellas situaciones en donde la vegetación poseía una cobertura menor a 25 %.
- La condición de humedad del suelo, que presentó los coeficientes de escorrentía máximos, fue para una condición III, es decir para un suelo saturado.
- En relación a los modelos utilizados, para determinar los coeficientes de escorrentía, éstos presentan una muy buena calidad de ajuste, lo que asegura una estimación y pronóstico del valor C, en marcos confiables superiores al Manual de Carreteras.

8.2. Recomendaciones

C = 0.00520673 P - 0.0697121

C = 0.00488989P - 0.0681395

 $C = (0.0107717 P - 0.016137)^2$

 $C = 0.798527 + 0.101038\sqrt{P}$

• Se recomienda el uso de los siguientes modelos ajustados, para cada escenario Vegetación- humedad del suelo estudiado. Los modelos son:

Vegetación plena, condición II (VPCII). $C = 0.126146\sqrt{P} - 0.387769$ Vegetación plena, condición III (VPCIII). C = 0.00367608P - 0.0605934Vegetación actual o intermedia, condición I (VACI). $C = (0.0104331 P - 0.0459641)^{2}$ Vegetación actual o intermedia, condición II (VACII). C = 0.344158 LOG P - 0.574467Vegetación actual o intermedia, condición III (VACIII).

Vegetación rala, condición I (VRCI).

Vegetación rala, condición II (VRCII).

Vegetación rala, condición III (VRCIII).

Donde:

C: Coeficiente de escorrentía.

Precipitación en 24 horas (mm).

- Se recomienda, estudiar las categorías de vegetación para el Número de Curva (NC), planteadas por Ponce (1989), de tal forma de asimilarlas más ampliamente con los tipos vegetacionales chilenos.
- Finalmente, es recomendable continuar esta línea de investigación, de tal forma que permita llegar a estimaciones del coeficiente de escorrentía más amplias desde el punto de vista espacial, procurando con ello un mejor diseño de ingeniería para las obras hidráulicas, propendiendo consecuencialmente a una mayor protección de vidas humanas e infractructura.

9. - BIBLIOGRAFÍA

- Aparicio, F. 1997. Fundamentos de Hidrología de Superficie. Editorial Limusa.
 México. 303 p.
- Chow, V; Maidment, D y Mays, D. 1994. Hidrología Aplicada. Editorial Mc Graw-Hill. Santafe, Colombia. 584 p.
- Cid, L.; Mora, C.; Valenzuela, M. 1990. Inferencia Estadística. Universidad de Concepción. Facultad de Ciencias, Departamento de matemáticas. Chile. 319 p.
- CIREN-CORFO. 1983. Materiales y Símbolos. Manual explicativo de la información del Proyecto Aerofotogramétrico CHILE/OEA/BID. Santiago, Chile. 53 p.
- Fernández, F. 1995. Manual de climatología aplicada: Clima, medio ambiente y planificación. Madrid, España. 285 p.
- Fernández, A. 1992. Revisión bibliográfica sobre erosión, generación de escorrentía y su manejo. Santiago, Chile. 67 p.
- Ferrer, F. 1993. Recomendaciones para el Cálculo Hidrometeorológico de Avenidas.
 Centro de Estudios y Experimentación de obras públicas. Madrid, España. 76 p.
- Fuentes, A. 2001. Por un progreso consciente. Chile Forestal 284: 11-17.
- Gujarati, D.1992. Econometría. Segunda edición. Mc Graw- Hill Latinoamericana.D.
 F. México.597 p.

- Linsley, R; Kohler, M y Paulus, J. 1988. Hidrología para ingenieros. Editorial Mc
 Graw-Hill Latinoamericana. México. 584 p.
- Llamas, J. 1993. Hidrología general, principios y aplicaciones. Servicio editorial Universidad del País Vasco. España. 635 p.
- López, F. 1998. Restauración Hidrológico Forestal y control de la erosión. Ingeniería Ambiental. Tragsa, Tragsatec, Ministerio del Medio Ambiente. Ediciones Mundi-Prensa. Madrid, España.
- Mintegui, J; López, F. 1990. La ordenación agrohidrológica en la planificación.
 Servicio Central de publicaciones del gobierno vasco. Vitoria-Gasteiz, España. 306 p.
- Montgomery, W.; Runger, G. 1996. Probabilidad y Estadísticas aplicadas a la Ingeniería. Mc Graw-Hill Latinoamericana. D.F. México. 895 p.
- Pizarro, R; Novoa, P. 1986. Elementos Técnicos de Hidrología. Instructivos Técnicos.
 Corporación Nacional Forestal, Ministerio de Agricultura. La Serena, Chile. 57 p.
- Pizarro, R. 1993. Elementos técnicos de hidrología III. Proyecto regional sobre uso y conservación de los recursos hídricos en áreas rurales de América Latina y el Caribe. Universidad de Talca. Talca, Chile. 125 p.
- Ponce, V. 1989. Engineering Hydrology, Principles and Practices. New Jersey, Estados Unidos, 640 p.
- Ramírez, C. 1998. Análisis comparativo de los modelos para la estimación de precipitaciones areales anuales en periodos extremos. Tesis. Universidad de Talca. Talca, Chile. 78 p.

- Santelices, R. 2002. Coberturas vegetacionales de la VII Región. Escuela de Ingeniería Forestal, Facultad de Ciencias Forestales, Universidad de Talca. Talca, Chile (contacto personal).
- Singh, V. 1988. Hydrologic system. Prentice Hall, Englewoods Cliffs. New Jersey, Estados Unidos. 2 Vol.
- Teméz, J. 1978. Cálculo hidrometeorológico de caudales máximos en pequeñas cuencas naturales, Dirección general de carreteras. Madrid, España. 63 p.
- Valllejos, O. 1999. Apuntes de Dasometría I. Escuela de Ingeniería Forestal.
 Universidad de Talca. Chile. 38 p.
- Wischmeier, W; Smith, D. 1978. Predicting Rainfall Erosión Losses- a Guide to Conservation. Department of Agriculture, U.S., Washintong. Agriculture Handbook N° 537. 59 p.

APÉNDICES

APÉNDICE I

Caracterización de los suelos y clasificación según Método del Número de curva

Tabla Nº 1. Caracter	Tabla Nº 1. Caracterización de los suelos y su clasificación según Método del número de curva.	
Fórmula principal	Características de los suelos (Desarrollo del perfil, drenaje y textura)	Grupos de suelo (Método del
		N° de curva)
IR 122/dg	1= Material reciente (roca intemperizada o depósito reciente)	C
	2= Buen drenaje	
	2= Moderadamente gruesa (areno franco fino, areno franco muy fino, franco arenoso, franco arenoso fino)	
QP 344	3= Desarrollo incipiente (material generador ligeramente intemperizado)	Ö
	4= Moderadamente bien drenado	
	4= Moderadamente fina (franco arcilloso, franco arcilloso arenoso, franco limoso)	
KT 524/E	5= Suelo inmaduro (material generador parcialmente intemperizado)	Ŋ
	2= Buen drenaje	
	2= Moderadamente gruesa (areno franco fino, areno franco muy fino, franco muy fino, franco arenoso, franco arenoso fino)	
ET 524/E	5= Suelo inmaduro (material generador parcialmente intemperizado)	Ŋ
	2= Buen drenaje	
	4= Moderadamente fina (franco arcilloso, franco arcilloso arenoso, franco limoso)	

	مراح	Total
•	on A non	
•	ntiniiori	
ζ	_)

Fórmula principal	Características de los suelos (Desarrollo del perfil, drenaje y textura)	Grupos de suelo (Método del
		N° de curva)
MU 322/ee	3= Desarrollo incipiente (material generador ligeramente intemperizado)	D
	2= Buen drenaje	
	2= Moderadamente gruesa (areno franco fino, areno franco muy fino, franco	
	muy fino, franco arenoso, franco arenoso fino)	
MU 524/ee	5= Suelo inmaduro (material generador parcialmente intemperizado)	D
	2= Buen drenaje	
	4= Moderadamente fina (franco arcilloso, franco arcilloso arenoso, franco	
	limoso)	
3R 323/e	3= Desarrollo incipiente (material generador ligeramente intemperizado)	В
	2= Buen drenaje	
	3= Media (franco arenoso muy fino, franco, franco limoso, limoso)	

APÉNDICE II Número de curva ponderado (NCP)

APÉNDICE II

CÁLCULO DEL NÚMERO DE CURVA PONDERADO (NCP)

Para el cálculo del número de curva ponderado (NCP), se utilizó la siguiente fórmula:

NCP =
$$\sum \left[\frac{(S_1 * N_1) + (S_2 * N_2) + \dots + (S_n * N_n)}{ST} \right]$$

Donde:

NCP: número de curva ponderado de la cuenca

S_n: superficie del sector n (ha)

N_n: número de curva del sector n

ST : superficie total de la cuenca (ha)

Considerando entonces, los valores de los números de curva y las superficies correspondientes a cada tipo de cobertura, se obtuvo el número de curva ponderado. De manera de demostrar como se realizó el cálculo, se determina el NCP para el Quinto escenario, es decir, la vegetación actual condición II (VACII).

$$NCP_{VACII} = \frac{1519009,529}{20962,713} \frac{h\acute{a}}{h\acute{a}}$$

$$NCP_{VACII} = 72,46244935 \approx 72,46$$

APÉNDICE III

Máxima infiltración

APÉNDICE III CÁLCULO DE LA MÁXIMA INFILTRACIÓN

El cálculo de la máxima infiltración considera el Número de curva; de esta manera, la fórmula para su obtención fue la siguiente:

$$S = 254 * \left(\frac{100}{N} - 1\right)$$

Donde:

S: Máxima infiltración (mm).

N: Número de curva.

Es así como, considerando cada uno de los valores de los números de curva, se obtuvo la máxima infiltración para los 9 escenarios planteados en el estudio. A fin de demostrar cómo se obtuvo, se calcula la máxima infiltración del Quinto escenario, vegetación actual para la condición II (VACII):

$$S_{VACII} = 254 * \left(\frac{100}{72,46} - 1 \right)$$

$$S_{VACII} = 96,54 \text{ mm}.$$

APÉNDICE IV

Precipitación efectiva

APÉNDICE IV CÁLCULO DE LA PRECIPITACIÓN EFECTIVA

Previo al cálculo de la Precipitación efectiva, se determinó la escorrentía superficial, la cual considera el umbral crítico de escorrentía (0,2 S). De esta forma, la fórmula para su cálculo fue la siguiente:

$$Q_{(ij)} = 0$$
 si $\sum P(ij)$ 0,2 S

$$Q_{(ij)} = \frac{(\sum P(ij) - 0.2 \text{ S})^2}{(\sum P(ij) + 0.8 \text{ S})}$$
 si $\sum P(ij) > 0.2 \text{ S}$

Donde:

Q_(ij) = escorrentía superficial para la hora j, para al tormenta i (mm).

Io = umbral crítico de escorrrentía (0,2 S).

S = máxima infiltración (mm).

Pij = precipitación para la hora j, par la tormenta i (mm).

Es así como, considerando cada uno de los valores de precipitación, se obtuvo la escorrentía superficial para lapsos de 1, 2 y 4 horas, tanto para las tormentas de alta como de baja intensidad. A fin de demostrar cómo se obtuvo, se calcula la escorrentía superficial del Quinto escenario (VACII) de la Tormenta Nº 1, de alta intensidad, a las 18: 00 hrs y para lapsos de 1 hora.

$$S = 96,54 \text{ mm}$$

$$Io = 0.2*96,54$$

$$Io = 19,308 \text{ mm}$$

$$Q_{(1,6pm)} = (27.5 \text{ mm} - 19.308 \text{ mm})^2 / (27.5 \text{ mm} + 77.232 \text{ mm})$$

$$Q_{(1,6pm)} = 0,641 \text{ mm}$$

La precipitación efectiva se obtuvo mediante la siguiente expresión:

$$Pe_{ij} = Q_{(ij)} - Q_{(ij\text{-}1)}$$

Donde:

Pe_{ij} = Precipitación efectiva para la hora j, para la tormenta i (mm).

 Q_{ij} = Escorrentía superficial para la hora j, para la tormenta i (mm).

De esta manera, al igual que en caso anterior se calculó la precipitación efectiva para el Quinto escenario y para lapsos de 1 hora:

$$Pe_{(1,6pm)} = 0,641 \text{ mm} - 0,159 \text{ mm}$$

Pe
$$_{(1,6pm)}$$
 = 0,482 mm

APÉNDICE V

Coeficiente de escorrentía

APÉNDICE V CÁLCULO DEL COEFICIENTE DE ESCORRENTÍA

Para el cálculo del Coeficiente de escorrentía, se utilizó la siguiente fórmula:

$$\mathbf{C_{ij}} = \frac{\Delta \left(Pe_{ij} - Pe_{i(j-1)} \right)}{\Delta \left(P_{ij} - P_{i(j-1)} \right)}$$

Donde:

 C_{ij} = coeficiente de escorrentía para la hora j, para la tormenta i.

Pe_{i J} = precipitación efectiva para la hora j, para la tormenta i (mm).

P_{i j} = precipitación para la hora j, para la tormenta i (mm).

 Δ = differencial de variable.

Considerando entonces cada uno de los valores de precipitación, se obtuvo el Coeficiente de escorrentía para 1, 2 y 4 horas y para cada tormenta, tanto de alta como de baja intensidad. A fin de demostrar cómo se obtuvo, se calcula el Coeficiente de escorrentía del Quinto escenario (VACII) de la Tormenta N° 1, de alta intensidad, a las 18: 00 hrs.

$$\mathbf{C}_{(1, 18)} = \frac{\Delta (0,6408 - 0,1585) \,\text{mm}}{\Delta (27,5 - 23,3) \,\text{mm}}$$

$$C_{(1, 18)} = 0.1148 \text{ mm}.$$

ន	
þ	
_	
je	
S	
윽	
2	
E	
Ē	
y para interva	
121	
4	
PCI y 1	
Š	ĺ
VPCI	
=	
35	l
ĭ	
it	
S	ŀ
rimera	
Ĕ	
Ē	
4	
oara la P	
ıra	
Ď	
ĺ	
Ħ	
escorrentía	
Ö	
Se	
e	
s de	
Coeficientes	
en	ŀ
<u>:</u>	
ef	
ဦ	
-	
₹	
Z	
Tabla Nº 1. Coefic	
abla	
Ë	

la N	1. Coe	licient	es de es	corren	tia par:	a la Pri	meras	Ituacio	n VPC	I y par	a inter	valos c	ie i nor		
Hora	I	T2	T3	<u>T</u>	TS	9L	T7	T8	L)	T10	T11	T12	T13	T14	TIS
08:00 a.m.															
09:00 a.m.															
10:00 a.m.															
11:00 a.m.															
12:00 p.m.															
01:00 p.m.															
02:00 p.m.															
03:00 p.m.															
04:00 p.m.															
05:00 p.m.															
06:00 p.m.															
07:00 p.m.															
08:00 p.m.															
09:00 p.m.															
10:00 p.m.															
11:00 p.m.														0,0004	
12:00 a.m.														0,0016	
01:00 a.m.														,	
02:00 a.m.														ı	
03:00 a.m.					8900'0								0,0002	,	
04:00 a.m.					0,0236								0,0285	,	
05:00 a.m.					0,0402								0,0931	,	
06:00 a.m.					0,0497								0,1698		
07:00 a.m.					0,0526								0,2176	,	
08:00 a.m.					0,0538								0,2333		
Promedio neto					0,0378								0,1237	0,001	
			AI: Alta	AI: Alta intensidad						VPCI: Ve	getación p	VPCI: Vegetación plena, condición I	lición I		
			T1: Tormenta	nenta 1						(-): SIM escorrentia	Offenda				

T1: Tormenta 1

Tabla Nº 2. Coeficiente de escorrentía para la Segunda situación VPCII y para intervalos de 1 hora.

Hora	171	T2	T3	T4	T5	T6	17	T.8	L19	T10	T11	T12	T13	T14	T15
08:00 а.ш.															
09:00 а.т.															
10:00 a.m.															
11:00 a.m.															
12:00 р.т.															
01:00 p.m.														0,0023	
02:00 р.т.											0,001			0,0912	
03:00 p.m.				0,0057							0,0246			0,1844	
04:00 p.m.				0,084							0,0403			0,2322	
05:00 p.m.				0,137							0,0523			0,2561	
06:00 p.m.				0,1819		0,0007					0,0651			0,2749	
07:00 p.m.				0,2523	1E-05	0,0081					0,0834			0,3083	0,0181
08:00 p.m.	0,0105			0,2917	0,0256	0,0247					0,0962			0,3388	0,0928
09:00 р.т.	0,0533			0,3054	0,0786	0,078					0,111			0,3482	0,129
10:00 p.m.	880'0			0,3165	0,1213	0,1218	0,0033			600,0	0,1285			0,3555	0,138
11:00 p.m.	0,1086		0,0015	-	0,1782	0,1422	0,0542	0,0039		86/000	0,1389		0,0189	0,3604	0,1573
12:00 a.m.	0,1425	0,0003	0,039	•	0,2501	0,1546	0,128	0,0573		0,1337	0,1537		0,1066	0,3618	0,1735
01:00 а.ш.	0,183	0,0643	0,0944		0,3012	0,1659	0,1932	0,1305		0,1491	0,1721		0,1953	-	0,1761
02:00 a.m.	0,2233	0,1565	0,1361	0,3175	0,3406	0,1783	0,2333	0,2014		0,1537	0,1963	0,0051	0,2717		1
03:00 a.m.	0,2542	0,2112	0,1693		0,3678	0,1925	-	0,2515		'	0,2134	0,0385	0,3343	,	0,1787
04:00 a.m.	0,261	0,2342	0,2001	-	8986,0	0,2047		0,2778		ı	,	0,0813	0,3921	-	
05:00 a.m.		0,2397	0,2138		0,4052	0,219	0,265	0,2976		0,1587		0,1188	0,4611	-	<u> </u>
06:00 a.m.	-	0,2455	0,2231	-	0,4156	0,2465	0,2971	0,3078		0,1641	,	0,1893	0,5366	,	0,1822
07:00 a.m.	-	0,2748	0,2319	-	0,4187	0,268	0,3175	0,3102	0,0373	0,1655	0,2158	0,2298	0,5804		
08:00 a.m.	-	0,3171	0,2519	-	0,42	-	0,3337	0,3195	0,1132	0,1668		0,2846	0,5941	,	
Promedio neto	0,1471	0,1937	0,1561	0,2102	0,265	0,1432	0,2028	0,2157	0,0752	0,1312	0,1128	0,1353	0,3491	0,2595	0,1384
!			AI: Alta i	AI: Alta intensidad						VPCII: V	egetación	VPCII: Vegetación plena, condición II	dición II		

V PCII: Vegetación plena, condición II (-): sin escorremtía

Tabla Nº 3. Coeficientes de escorrentía para la Tercera situación VPCIII y para intervalos de 1 hora.

Hora	TI	T2	T3	T4	TS	T6	T7	T8	T9	T10	T11	T12	T13	T14	T15
08:00 а.т.															
09:00 а.т.						0,0004									
10:00 a.m.						0,0823									
11:00 a.m.						0,2101					0,0139				
12:00 p.m.	9000,0					0,2944					0,1155			0,0464	
01:00 p.m.	0,0239			0,0458		0,3353		0,018			0,2065			0,3067	
02:00 р.т.	0,0855			0,2008		0,3711		0,0805			0,3458			0,5057	
03:00 p.m.	0,1778			0,3647		0,3927		0,1478			0,4367			0,5939	0,0255
04:00 p.m.	0,2245		5E-05	0,4989		63686		0,1998		0,0156	0,4537			0,6347	0,0665
05:00 p.m.	0,2295		0,0225	0,551	0,0829	0,403	0,031	0,2497		0,0981	0,4665			0,654	0,1295
06:00 p.m.	0,2728	0,0168	0,0435	0,5917	0,258	0,4083	0,0936	0,2928		0,1628	0,4799		0,002	0,6688	0,2779
07:00 p.m.	0,3519	0,0462	0,0703	0,6507	0,3751	0,4182	0,0107	0,3224		0,2008	0,4987		0,0875	0,6939	0,4194
.m.d 00:80	0,418	0,0064	0,1416	0,6816	0,4376	0,3684	0,1846	0,3517		0,2534	0,5115		0,176	0,716	0,5079
09:00 p.m.	0,4674	0,1131	0,2162	0,6919	0,4936	0,493	0,2957	0,3713		0,3267	0,5261	0,0023	0,2656	0,7226	0,5434
10:00 p.m.	0,5033	0,2034	0,2971	0,7	0,536	0,5365	0,3882	0,3778		0,409	0,543	0,113	0,3393	0,7276	0,5519
11:00 p.m.	0,5238	0,2965	0,3872	-	0,5883	0,5559	0,4683	0,4047		0,4946	0,5528	0,2377	0,4192	0,731	0,5698
12:00 a.m.	0,556	0,3794	0,4522	-	0,6491	0,5674	0,5421	0,4714		0,5479	0,5665	0,3081	0,5214	0,732	0,5844
01:00 a.m.	0,5928	0,4783	0,5095	-	0,6887	0,5776	0,6017	0,5446		0,5623	0,5832	0,3664	0,6032		0,5868
02:00 a.m.	0,6273	0,5688	0,5501	0,7008	0,7172	0,5887	0,6356	9809'0		0,5665	0,6044	0,4129	0,6661	ı	ı
03:00 a.m.	0,6526	0,6172	9085'0	-	0,736	0,6012	-	0,6504	0,0758	ı	0,6191	0,4516	0,7127	,	0,5891
04:00 a.m.	0,6579	0,6364	0,6077	-	0,7486	0,6117	ľ	0,671	0,2253		,	0,4964	0,752	-	
05:00 a.m.	-	0,6409	0,6194	-	0,7606	0,6238	0,6611	989'0	0,298	0,5711	-	0,5336	0,7947		ļ ,
06:00 a.m.	•	0,6456	0,6272	-	0,7672	0,6464	0,6857	0,6937	0,3586	0,576	1	0,6373	0,8366	1	0,5922
07:00 a.m.	,	0,6686	0,6345	-	0,7692	0,6635	0,7008	0,6954	0,4498	0,5772	0,6211	0,6327	0,8589	•	'
08:00 a.m.	ı	0,7004	0,6507	-	0,77		0,7124	0,7022	0,528	0,5785	ı	9/9′0	0,8656	•	
Promedio neto	0,3744	0,4012	0,3771	0,5162	0,5861	0,4412	0,4294	0,427	0,3226	965'0	0,4525	0,4057	0,5267	0,5949	0,4188
			AI: Alta i	Alta intensidad						VPCIII: Vesetación nlena condición III	/egetación	nlens on	ndición III		

AI: Alta intensidad

VPCIII: Vegetación plena, condición III (-): sin escorrentía 95

T1: Tormenta 1

Tabla Nº 4. Coeficientes de escorrentía para la Cuarta situación VACI y para intervalos de 1 hora.

Hora	Tı	T2	T3	T4	T5	T6	T7	T.8	T9	T10	T11	T12	T11	T.1.4	T.15
08:00 a.m.						_			-						
09:00 a.m.								_					_		
10:00 a.m.		_			-		<u> </u>	\downarrow							
11:00 a.m.															_
12:00 p.m.															
01:00 p.m.															
02:00 p.m.															
03:00 р.т.		_					\perp								
04:00 p.m.				0,0036											
05:00 p.m.				0,034								\downarrow			
06:00 p.m.				0,0761											
07:00 p.m.				0,1433											
08:00 p.m.				0,1815											0.000
09:00 p.m.				0,195	0,0003	0,0005					0.01				Choo'o
10:00 p.m.	3E-06			0,2059	0,0194	0,0199					19000				0,0200
11:00 p.m.	0,0077			-	0.0727	0.0388				1000	0,0201				0,0349
12:00 a.m.	0.0391				0 1413	20200	1000			0,002/	0,0358				0,053
01:00 s m	0.0777	21000	0.0046		0,1413	0,050,0	0,027			0,031	0,0496		0,0132		0,0682
02.00 0	27170,0	0,0010	0,0045	٠	0,1909	0,0611	0,0868	0,0283		0,0453	6990'0		0,0889		90/000
02:00 4:111.	0,1153	0,0523	0,0331	0,2069	0,2297	0,0727	0,1251	0,0946		0,0496	0,0897		0,1621	9600,0	
03:00 a.m.	0,1432	0,1039	0,0643		0,2568	0,0861	'	0,1426		ı	0,106		0,2236	0,0785	0,0731
04:00 4:111.	0,1517	621,0	0,0933		0,2759	0,0977	1	0,168		,		2E-05	0,2814	0,124	
03:00 21:III.	<u> </u>	0,1312	0,1064	,	0,2946	0,1114	0,1556	0,1873		0,0543	,	0,0171	0,3521	0,147	
Jo:00 2.m.	,	0,1367	0,1152	'	0,3052	0,1378	6981,0	0,1973		0,0594		0,0744	0,4315	0,1652	0,0764
u/:00 a.m.	,	0,1651	0,1236	•	0,3084	0,1585	0,2069	0,1997		9090,0	0,1083	0,1216	0,4787	0,1978	
08:00 a.m.		0,2064	0,1429		0,3097		0,2229	0,2088	0,0151	0,0619		0,1747	0,4937	0,2279	.
rromedio	0,0766	0,1154	0,0854	0,1308	0,2004	0,0759	0,1444	0,1533	0,0151	0,0456	0,0615	9/1/00	0,2806	0,1357	0,0509
			AI: Alta	AI: Alta intensidad						VACIONS		-			

VACI: Vegetación actual, condición I (-): sin escorrentía

Tabla Nº 5. Coeficientes de escorrentía para la Quinta situación VACII y para intervalos de 1 hora.

Hora	T1	T2	T3	T4	TS	T6	T7	T8	6 <u>T</u>	T10	T11	T12	T13	T14	T15
08:00 a.m.															
09:00 a.m.															
10:00 a.m.															
11:00 a.m.				<u> </u>		0,0565									
12:00 p.m.						0,1354					0.0005				
01:00 p.m.						0,1748					0.053			0 1401	
02:00 p.m.				0,0484		0,2101					0.1857			0.3480	
03:00 p.m.	0,0284			0,2045		0,2316		0,0071			0.2763			0.7463	
04:00 p.m.	0,0695			0,3414		0,2378		0,0467			0.2938			0.4019	
05:00 p.m.	0,0742			0,3975	0,0012	0.242		0.093			0.3072			0177.0	
06:00 p.m.	0,1148			0,4428	0,1013	0,2474		0.1338		0.0132	0.3213			0,5143	0,006
07:00 p.m.	0,1913			0,5106	0,2142	0,2574		0,1623		0.0477	0.3411			0.5517	1021,0
08:00 p.m.	0,2572		0,008	0,547	0,2773	0,2349	0,0369	0,1909		0.0966	0.3547		0.0251	0,2010	6570
09:00 p.m.	0,3081	0,0003	0,0619	0,5593	0,3357	0,3351	0,1367	0.2102		0.1666	0.3705		0.1007	1000,0	100,0
10:00 р.т.	0,346	0,0502	0,1381	0,5692	0,3812	0,3817	0.2273	0.2167		0.2482	3886	0.0065	0,1002	0,000	0,3893
11:00 p.m.	0,3679	0,1375	0.2262	ļ.	0.439	0.4020	0 3001	0.2430		2012.0	000000	CCOO'O	0,1/8/	0,0031	0,3985
12:00 a m	0.4031	0.2105	,,,,,,		7000	0,4027	1,500,0	0,2438		0,3369	0,3995	0,0819	0,2588	0,6072	0,4183
01.00	160+60	0,2183	0,2923		0,5086	0,4156	0,388	0,3125		0,3941	0,4146	0,1485	0,3656	0,6085	0,4345
01:00 a.m.	0,444	0,3199	0,3527	1	0,5555	0,427	0,454	0,3907		0,41	0,4332	0,2055	0,4559		0,4372
02:00 a.m.	0,4833	0,4173	0,3966	0,5701	0,5902	0,4393	0,4929	0,462		0,4147	0,4571	0,252	0,5286		
03:00 a.m.	0,5126	0,4716	0,4304	1	0,6135	0,4534		0,51	0,0005		0,4738	0,2918	0,5847	'	0,4398
04:00 a.m.	0,5189	0,4937	0,4609	'	0,6294	0,4654		0,5344	0,0705			0,3387	0,6337		
05:00 a.m.	-	0,4989	0,4742	•	0,6446	0,4792	0,5226	0,5523	0,1388	0,4197		0,3786	0,6888		
06:00 a.m.		0,5044	0,4831	-	0,653	0,5054	0,5519	0,5615	0,1979	0,4252		0,4739	0,7452		0,4432
07:00 a.m.		0,5315	0,4915	•	0,6555	0,5254	0,5701	0,5636	0,29	0,4265	0,4761	0,4894	0,7762		
08:00 a.m.	'	0,5696	0,5104		0,6566		0,5842	0,5718	0,3726	0,4279	,	0,5404	0,7856	,	1
Promedio neto	0,2942	0,3511	0,3328	0,4191	0,4535	0,3266	0,3885	0,3202	0,1784	0,2944	0,3263	0,2915	0,4719	0,5039	0,3361
		1	AI: Alta in	ta intensidad						VACIL: W	-	7			

AI: Alta intensidad

T1: Tormenta 1

VACII: Vegetación actual, condición II (-): sin escoerrentía

Ë

Tabla Nº 6. Coeficientes de escorrentía para la Sexta situación VACIII y para intervalos de 1 hora.

Hora	Tı	T2	Т3	T4	TS	T6	T7	T8	T9	T10	T11	T12	T13	T14	T15
08:00 a.m.	_														
09:00 a.m.						0,1913					0,0109				
10:00 a.m.	0,0909					0,4315	0,0028	0,0002			0,1364			0,0083	
11:00 a.m.	0,2734					0,5567	0,1346	0,1131			0,3075			0,157	
12:00 p.m.	0,3143	0,0526		0,0722		0,6301	0,2344	0,2702		0,0162	0,4664			0,3755	0,0051
01:00 р.т.	0,3689	0,1821		0,3737		0,6628	0,2732	9095,0		0,0917	0,5537			0,6364	0,1247
02:00 p.m.	0,4353	0,2553		0,5482		0,6902		0,4303		0,1133	6699'0			0,7823	0,2622
03:00 p.m.	0,5271	0,2734		0,684	0,0072	0,7062		0,4986		0,221	0,7373			0,835	0,3682
04:00 p.m.	0,5704	0,2963	0,1443	0,7782	0,2026	0,7107	0,2964	0,5479		0,3537	0,7489		0,0087	0,8574	0,4156
05:00 p.m.	0,5748	0,3289	0,3673	0,8105	0,431	0,7136	0,3703	0,5923		0,4483	0,7575		0,1301	0,8674	0,4801
06:00 p.m.	0,6119	0,3608	0,3907	0,8338	0,5984	0,7175	0,4442	0,6288		0,5133	0,7663		0,2883	0,8749	0,6152
07:00 p.m.	0,6755	0,3936	0,4196	0,8656	0,693	0,7245	0,0458	0,6527		0,5488	0,7783		0,4371	0,8872	0,7248
08:00 p.m.	0,7242	0,0413	0,4923	0,8813	0,7379	0,6175	0,533	0,6756		0,5955	0,7864	0,0334	0,5257	8768,0	0,7841
09:00 p.m.	0,758	0,4639	0,5628	0,8863	0,775	0,7746	0,6309	0,6904		0,6559	0,7955	0,2626	0,6055	8006,0	908'0
10:00 p.m.	0,7813	0,5509	0,6319	0,8902	0,8015	0,8018	0,7026	0,6952		0,7177	0,8057	0,4628	0,6659	0,9032	0,811
11:00 p.m.	0,794	0,6315	0,7019		0,8319	0,8133	0,7585	0,7148		0,7755	0,8116	0,5816	0,7246	0,9047	0,8215
12:00 a.m.	0,8134	0,6962	0,7478	-	0,8648	0,8201	0,805	0,7605		9808'0	0,8196	0,6412	0,7924	0,9051	0,8299
01:00 a.m.	0,8346	0,7647	0,7851	-	0,8847	0,826	0,8395	9908,0	0,061	0,8171	0,8292	9989'0	0,8401		0,8312
02:00 a.m.	0,8534	0,8208	0,8099	0,8906	0,8983	0,8323	0,8578	0,8432	0,2387	0,8196	0,841	0,7207	0,8735		ı
03:00 а.т.	0,8667	0,848	0,8277	•	206,0	0,8392	-	0,8655	0,4227		0,849	0,7474	0,8962		0,8325
04:00 a.m.	0,8694	0,8583	0,8428	,	0,9126	0,845	,	928,0	0,5704	,	,	0,7769	0,9141	,	
05:00 a.m.		9098'0	0,8492	1	0,9179	0,8516	0,871	0,8834	0,6331	0,8223		8,0	0,9322		
06:00 a.m.	-	0,863	0,8534	•	0,9207	0,8634	0,8832	0,8872	0,6805	0,8251	,	0,905	0,9488		0,8342
07:00 a.m.	-	0,8748	0,8572	•	9126'0	0,8722	9068'0	0,888	0,746	0,8258	0,8501	0,8562	0,9571		
08:00 a.m.	'	0,8904	0,8657	-	0,9219		0,8961	0,8912	0,7965	0,8265		0,8784	0,9595		
Promedio neto	0,6178	0,5384	0,6559	9602'0	0,7349	0,717	0,5511	0,6336	0,5186	0,5682	999'0	0,6425	0,6765	0,7195	9965,0
			AI: Alta iu	AI: Alta intensidad						VACIII	Vernészika	- Journal	1 - 7 - 7		

AI: Alta intensidad

T1: Tormenta 1

VACIII: Vegetación actual, condición III (-): sin escorrentía

Tabla Nº 7. Coeficientes de escorrentía para la Séptima situación VRCI y para intervalos de 1 hora.

Hora	T.1	T2	T3	T4	TS	T6	T7	T8	T9	T10	T11	T12	T13	T14	T15
08:00 а.т.															
09:00 a.m.															
10:00 a.m.															
11:00 a.m.		<u> </u>													
12:00 p.m.															
01:00 p.m.														0.0003	
02:00 p.m.														0,0712	
03:00 p.m.				0,0016							0,0059			0,1633	
04:00 p.m.				0,064							0,021			0,2108	
05:00 p.m.				0,1164							0,0328			0,2345	
06:00 p.m.			_	0,1608							0,0455			0,2533	
07:00 p.m.				0,2308							0,0635			0,2866	0,0083
08:00 p.m.	0,0016			0,27	8600'0	0,0093					9,0076			0,3172	0,0728
09:00 р.ш.	0,0338			0,2838	0,0587	0,0581					0,0907			0,3265	0,1085
10:00 p.m.	890,0			0,2949	0,1008	0,1013	0,0001			0,0019	0,108			0,3339	0,1173
11:00 р.т.	0,0883				0,1572	0,1215	0,0347			90,0	0,1183		0,0091	0,3387	0,1365
12:00 a.m.	0,1218		0,02	-	0,2286	0,1338	0,1075	0,0378		0,1131	0,1329		0,0864	0,3403	0,1525
01:00 a.m.	0,1619	0,0454	0,0743	•	0,2796	0,145	0,172	0,11		0,1284	0,1511		0,1741		0,1551
02:00 a.m.	0,2019	0,1357	0,1154	0,2958	0,3189	0,1572	0,2119	0,1802		0,1329	0,1751		0,2501		
03:00 а.т.	0,2327	0,1899	0,1484	•	0,3462	0,1713		0,23		. 1	0,192	0,0194	0,3127		0,1577
04:00 a.m.	0,2394	0,2128	0,1789	•	0,3653	0,1834		0,2562		'		0,0613	0,3706	ŀ	
05:00 a.m.	-	0,2182	0,1925	•	0,3838	0,1977	0,2434	0,2759		0,1379		0,0984	0,4402		
06:00 a.m.	-	0,224	0,2017	•	0,3943	0,225	0,2755	0,2862		0,1432		0,1664	0,5166		0,1611
07:00 а.т.	-	0,2532	0,2104	-	0,3974	0,2464	0,2958	0,2885	0,0213	0,1445	0,1945	0,2083	0,5613		,
08:00 a.m.	-	0,2954	0,2304		0,3987		0,312	0,2978	0,0929	0,1459	1	0,263	0,5753		
Promedio neto	0,1277	0,1968	0,1524	0,1909	0,2646	0,1458	0,1837	0,2181	0,0571	0,112	0,1005	0,1361	0,3296	0,2397	0,1188
:			AI. Alta ir	Alta intensidad						V. V. V.	1,100				

AI. Alta intensidad

T1: Tormenta 1

VRCI: Vegetación rala, condición I (-): sin escorrentía

Tabla Nº 8. Coeficientes de escorrentía para la Octava situación VRCII y para intervalos de 1 hora.

Hora	T1	T2	T3	T4	TS	T6	T7	Т8	T9	T10	T11	T12	T13	T14	T15
08:00 a.m.															
09:00 a.m.															
10:00 a.m.						0,0298									
11:00 a.m.						0,1467					0,0005				
12:00 p.m.						0,2295					0,0552			0,0152	
01:00 p.m.				0,015		0,2702					0,1431			0,2425	
02:00 р.т.	0,0281			0,1377		0,3062		0,0228			0,281			0,4438	
03:00 p.m.	0,1152			0,3		0,3279		0,0862			0,3726			0,5361	0,0002
04:00 p.m.	0,1607		_	0,4366		0,3342		0,1366			66,0			0,5797	0,0082
05:00 p.m.	0,1656			0,4909	0,0353	0,3383	0,0031	0,1854		0,0389	0,4032			0,6005	0,0687
06:00 p.m.	0,2081			0,5338	0,1937	0,3438	0,0342	0,2279		0,1007	0,417			0,6164	0,2134
07:00 p.m.	0,2869	9E-06	0,013	6965,0	0,3102	0,3538	0,0047	0,2573		0,1376	0,4364		0,0327	0,6437	0,3552
08:00 p.m.	0,3536	900000	0,0803	0,6303	0,3736	0,3151	0,1219	0,2867		0,1891	0,4497		0,1135	6/99,0	0,446
09:00 p.m.	0,4041	0,0528	0,1526	0,6415	0,4311	0,4305	0,2308	0,3063		0,2617	0,4649		0,2012	0,6751	0,483
10:00 p.m.	0,4412	0,1401	0,2323	0,6504	0,4752	0,4757	0,3235	0,3129		0,3445	0,4825	0,0551	0,2742	0,6807	0,4919
11:00 р.т.	0,4625	0,2316	0,3224	1	0,5303	964,0	0,4051	0,3401		0,4323	0,4928	0,1737	0,355	0,6844	0,5107
12:00 a.m.	0,4962	0,3145	0,3885	-	0,5952	0,5081	0,4817	0,4083		0,4876	0,5072	0,2431	0,4601	0,6855	0,5261
01:00 а.т.	0,535	0,4155	0,4477	-	0,638	0,5189	0,5444	0,4843		0,5028	0,5248	0,3015	0,5461		0,5286
02:00 a.m.	0,5717	0,5097	0,49	0,6512	0,6692	90£5'0	0,5807	0,5518		0,5072	0,5473	0,3484	0,6136	,	
03:00 а.ш.	0,5989	0,5609	0,5221	-	6689'0	0,5439	t	0,5965	0,0309		0,5629	0,3879	0,6643		0,5311
04:00 a.m.	0,6047	0,5815	0,5509	-	0,7039	0,5551	-	0,6188	0,1616		-	0,4341	0,7077		-
05:00 a.m.	'	0,5863	0,5633	-	0,7173	895'0	809'0	0,6351	0,2331	0,5121	,	0,4727	0,7555	-	,
06:00 а.т.	•	0,5913	0,5716	-	0,7246	0,5922	0,6347	0,6434	0,2936	0,5172	,	0,5737	0,8033		0,5343
07:00 a.m.	•	0,6162	0,5794	-	0,7268	0,6106	0,6512	0,6453	0,3861	0,5185	0,5651	0,5775	0,829		
08:00 a.m.	-	0,6508	0,5968	-	0,7277		6699,0	0,6527	0,4669	0,5198	,	0,6243	0,8367		
Promedio neto	0,3622	0,3751	0,3936	0,4622	0,5339	0,4011	7775,0	0,3894	0,262	0,3621	0,3942	0,3811	0,5138	0,544	0,3613
			AI: Alta i	AI: Alta intensidad						VRCII: V	egetación	VRCII: Vegetación rala, condición II	ición II		

VRCII: Vegetación rala, condición II (-): sin escorrentía

Tabla Nº 9. Coeficientes de escorrentía para la Novena situación VRCIII y para intervalos de 1 hora.

Hora	T1	T2	T3	T4	TS		T7	81	T9	T10	T11	T12	T13	T14	T15
08:00 a.m.						0,2127									
09:00 a.m.						0,3421		8E-05			0,0586				
10:00 a.m.	0,2					0,5754	0,046	0,0812			0,2886			0,0731	
11:00 a.m.	0,4272	0,0579				0,6844	0,2862	0,2635			0,459			0,3096	
12:00 p.m.	0,4667	0,1969		0,1761		0,7447	0,3888	0,4239		0,1166	0,6067			0,5233	0,0827
01:00 p.m.	0,5184	0,3357		0,5216		0,7707	0,4271	0,5105		0,2415	0,682			0,7485	0,276
02:00 p.m.	0,579	0,4094		0,6772		0,792		0,5746		0,2645	0,7758			0,8603	0,416
03:00 p.m.	0,6594	0,4272		0,7867	0,0821	0,8042	1	0,635		0,3746	0,8276			0,8974	0,5176
04:00 p.m.	0,6961	0,4495	0,2713	0,8574	0,3553	9/08'0	0,4496	0,6772		0,5041	0,8361		0,0991	0,9125	0,5614
05:00 p.m.	2669,0	0,4808	0,5169	0,8804	0,5746	8608,0	0,5194	0,7141		0,5907	0,8424		0,2818	0,9193	0,6187
06:00 p.m.	0,7301	0,5108	0,5386	9968'0	0,7187	0,8127	0,5872	0,7438		0,6477	0,8489		0,4412	0,9242	0,7324
07:00 p.m.	0,7805	0,5413	0,5649	816,0	0,7941	0,818	90,0	0,7627		0,678	0,8576		0,5804	0,9323	0,8181
08:00 p.m.	0,8177	0,0559	0,6294	0,9284	0,828	0,6919	0,6643	0,7806		0,7168	0,8634	0,1338	0,6584	1666'0	0,8617
09:00 p.m.	0,8428	0,6045	0,6897	0,9317	0,8551	0,8548	0,7453	0,7921		0,7652	8698'0	0,4154	0,7247	0,9411	0,8773
10:00 p.m.	0,8597	9629,0	0,7461	0,9342	0,8741	0,8743	0,8013	0,7958		0,8128	0,8771	0,6032	0,7731	0,9425	0,8808
11:00 p.m.	0,8688	0,7458	0,8009	'	0,8952	0,8824	0,8432	0,8107		0,8555	0,8812	0,7053	6/18/0	0,9435	0,8881
12:00 a.m.	0,8824	0,7965	0,8353	·	0,9175	0,8871	0,8765	0,8446	0,0279	0,8791	0,8868	0,7536	0,8675	0,9438	0,8939
01:00 a.m.	0,8971	0,8476	0,8624		0,9306	0,8912	0,9004	9/1/8	0,2014	0,8851	0,8934	0,7891	6006'0	-	0,8948
02:00 a.m.	0,9099	9/88/0	88,0	0,9345	0,9394	0,8955	0,9129	0,903	0,3924	8988'0	0,9015	0,8151	0,9233	-	٠
03:00 а.т.	0,9188	0,9062	0,8923	,	0,945	0,9003		0,918	0,567		6906,0	0,8351	866'0	•	0,8957
04:00 a.m.	0,9206	0,9132	0,9027		0,9486	0,9042	,	0,9249	6569,0		•	0,8565	0,9495	1	
05:00 a.m.		0,9147	0,9071		0,9519	0,9087	0,9216	0,9298	0,7472	0,8886		0,8731	0,9607	-	1
06:00 a.m.	.	0,9164	0,9099		0,9536	0,9166	0,9297	0,9322	0,7844	9068'0	<u>'</u>	0,9749	80/6′0	-	6968'0
07:00 a.m.	'	0,9241	0,9125		0,9542	0,9224	0,9344	0,9328	0,8339	0,891	0,9077	0,9118	0,9758	'	•
08:00 a.m.	<u> </u>	0,9343	0,9181		0,9544		0,938	0,9349	0,8705	0,8915		0,9265	0,9772		1
Promedio	0,7197	0,6153	0,7517	0,7869	0,804	0,7793	0,6438	0,6985	0,569	0,6727	0,7535	0,738	0,7553	0,7874	0,6945
233			AI: Alta	Alta intensidad						VRCIII:	Vegetació	VRCIII: Vegetación rala, condición III	ıdición III		

AI: Alta intensidad

T1: Tormenta 1

(-): sin escorrentía

Tabla Nº 10. Coeficientes de escorrentía para la Tercera situación VPCIII y para intervalos de 1 hora.

Hora	TI	T2	T3	T4	TS	T6	T7	T8	T9	T10	T11	T12	T13	T14	T15
08:00 a.m.											:				
09:00 a.m.		!													
10:00 а.т.															
11:00 a.m.														_	
12:00 p.m.					i									_	
01:00 p.m.															
02:00 p.m.															
03:00 p.m.															
04:00 p.m.															
05:00 p.m.															
06:00 p.m.				<u></u>											
07:00 p.m.						0,0017									
08:00 p.m.						0,0126									
09:00 p.m.						0,0226									
10:00 p.m.						0,0648								_	
11:00 p.m.							0,0015					0,0154			
12:00 а.т.							0,0254					-			
01:00 a.m.						,	1	0,0035							
02:00 a.m.						0,116	0,038	6/0'0				-			
03:00 а.т.						0,1515		0,1411	0,0015			0,0338			
04:00 a.m.							,	0,1663	0,0352			0,0394			
05:00 a.m.								0,1785	0,0611	0,0002		,			
06:00 a.m.						0,1719	'	0,1839	1	0,0322					
07:00 a.m.						0,1849	ı	0,1998	1	0,1153		-			
08:00 a.m.						0,202	-	0,2215	•	0,2087					
Promedio neto						0,1031	0,0216	0,1467	0,0326	0,0891		0,0295			
			BI: Baja	Baja intensidad	ad					VPCIII:	Vegetació	VPCIII: Vegetación plena, condición III	ondición I	E	

si: Baja intensioad

T1: Tormenta 1

VPCIII: Vegetación ple: (-); sin escorrentía

Tabla Nº 11. Coeficientes de escorrentía para la Quinta situación VACII y para intervalos de 1 hora.

Hora	Ti	T2	Т3	T4	TS	T6	T7	T.8	L6	T10	T11	T12	T13	T14	T15
08:00 a.m.															
09:00 a.m.															
10:00 a.m.															
11:00 a.m.															
12:00 p.m.															
01:00 p.m.															
02:00 p.m.															
03:00 p.m.															
04:00 p.m.															
05:00 p.m.															
06:00 p.m.															
07:00 p.m.															
08:00 p.m.															
09:00 p.m.															
10:00 p.m.															
11:00 р.т.															
12:00 a.m.															
01:00 a.m.															
02:00 а.т.															
03:00 a.m.						6500,0		0,0011							
04:00 a.m.						1		0,0162							
05:00 a.m.			_					0,0272							
06:00 a.m.						0,0212		0,0322							
07:00 a.m.						0,0331		0,0468		0,0015					
08:00 a.m.						0,0487		0,0667		0,0551					
Promedio neto						0,0273		0,0317		0,0283					
			BI: Baja	BI: Baja intensidad	Į.					VACII: V	egetación	VACII: Vegetación actual, condición II	ndición II		

(-): sin escorrentía

T1: Tormenta 1

Tabla Nº 12. Coeficiente de escorrentía para la Sexta situación VACIII y para intervalos de 1 hora.

Hora	Tı	T2	T3	T4	TS	T6	17	T8	6 <u>T</u>	T10	T11	T12	T13	T14	T15
08:00 a.m.															
09:00 a.m.															
10:00 а.т.															
11:00 a.m.						0,0258									
12:00 p.m.						0,1951									
01:00 р.т.						0,2792				0,0301					
02:00 p.m.						0,2889				0,1388		0,0126			
03:00 p.m.						0,2927				0,1831		0,0607			
04:00 p.m.						0,3111				0,2404	2E-07				
05:00 p.m.		0,01		0,0051						0,2302	9600,0				
06:00 p.m.		0,0578		0,0771		,	:			0,2409		90800	0,0159		
07:00 p.m.		-		0,1823		0,3393				0,2451		0,1106	0,1336		
08:00 p.m.		•		0,2366		0,3561	0,0142			0,2574	,	0,1777			
09:00 p.m.		1		0,2409		0,3674	0,0831			0,2714	0,0371	0,2571	0,1785		
10:00 p.m.		-		-		0,4135	0,2018			0,2812	0,0941	0,3145			
11:00 p.m.		1		-		-	0,3196			1	0,1342	0,3592	-		
12:00 a.m.		'		-		-	0,3705	0,074		,	0,1418	'	0,2168		0,0364
01:00 a.m.		1		-		-	-	0,2917	0,0487	'	,	,	0,2533		0,1026
02:00 a.m.		0,0888		•		0,4671	0,3846	0,4285	0,1564	0,2908	0,1711	Þ			0,108
03:00 а.т.		0,1341	0,0436	0,2451		0,5023	1	0,4921	0,2824	1	0,197	0,38	1		١,
04:00 a.m.		-	0,1388	-		-	ı	0,5166	0,3814	0,3093	0,2016	0,3861			
05:00 а.m.		•	0,1924	0,2513	0,1111	-		0,5281	0,4098	0,3342					
06:00 a.m.		-	0,2194	-	0,2471	0,5219		0,5332	'	0,378	-	-	,	0,0126	0,1186
07:00 a.m.		-	0,2531	-	-	0,5342		0,548	1	0,4659	,	'		0,049	0,1342
08:00 a.m.		_	0,2793	-	0,2634	0,55	,	9/95,0	1	0,5558	•	1	0,2574	0,0665	0,1443
Promedio neto		0,0727	0,1878	0,1769	0,2072	0,363	0,229	0,4422	0,2558	0,2783	0,1096	0,2139	0,1759	0,0427	0,1073
			BI: Baja i	BI: Baja intensidad						VACIII	VACIII: Vegetación actual condición III	n actual c	ondición I	Ì⊨	

VACIII: Vegetación actual, condición III (-): sin escorrentía

Tabla Nº 13. Coeficientes de escorrentía para la Octava situación VRCII y para intervalos de 1 hora.

Hora	T1	T2	T3	T4	TS	T6	T7	T8	13	T10	T11	T12	T13	T14	TIS
08:00 a.m.															
09:00 а.ш.															
10:00 a.m.															
11:00 a.m.															
12:00 р.т.															
01:00 p.m.															
02:00 р.т.															
03:00 р.т.															
04:00 p.m.															
05:00 р.т.															
06:00 p.m.															
07:00 р.т.					 										
08:00 p.m.															
.m.d 00:60				L											
10:00 p.m.						0,0122									
11:00 p.m.						'									
12:00 a.m.															
01:00 a.m.															
02:00 a.m.						0,0556		0,0236							
03:00 a.m.						0,0897		0,0797							
04:00 a.m.								0,104							
05:00 a.m.						•		0,1158	0,0044						
06:00 a.m.						0,1094		0,1211	-	1E-04					
07:00 a.m.						0,1221		0,1366	-	0,055					
08:00 a.m.						0,1387		0,1577		0,1453					
Promedio neto						0,088		0,1055	0,0044	8990'0					
			BI: Baja	BI: Baja intensidad						VRCII: V	egetación	VRCII: Vegetación rala, condición II	ición II		

VRCII: Vegetación rala, condición II (-): sin escorrentía

Tabla Nº 14. Coeficientes de escorrentía para la Novena situación VRCIII y para intervalos de 1 hora.

Hora	T1	T2	T3	T4	TS	T6	17	T8	T9	T10	T111	T12	T13	T14	T15
08:00 a.m.															
09:00 a.m.															
10:00 a.m.															
11:00 a.m.						0,1238				0,001		0,0108			į
12:00 p.m.						0,3486				0,0381		<u> </u>			
01:00 p.m.						0,4329				0,1563	0,0058	0,0547			
02:00 p.m.						0,4423				0,2912	0,0587	0,1333			
03:00 p.m.						0,446				0,337	0,0826	0,2083			
04:00 p.m.		0,000		0,03	0,0054	0,4637				0,4203	0,1165				
05:00 p.m.		0,1143		0,1344	0,038	1				0,3846	0,1524				
06:00 p.m.		0,2052		0,2258		ı	0,0224			0,3952	,	0,2297	9/60,0		
07:00 р.т.		•		0,3359	0,0707	0,4906	0,0825			0,3993		0,2616	0,2857		
08:00 p.m.		-		166,0		0,5064	0,1482			0,4115	1	0,3313			
09:00 p.m.	0,0295	1		0,3952	-	0,517	0,2323			0,4253	0,1826	0,4112	0,3322	0,0172	
10:00 р.т.	0,0628	•		-	•	0,5594	0,3554			0,4348	0,2042	0,467	-	0,0628	
11:00 p.m.	•	-		•	,		0,4718	0,0067			0,2756	0,5093	1	0,0747	0,0194
12:00 a.m.	'	1		-	•	1	0,5199	0,2069	0,0162		0,2837		0,3711	0,0903	0,1742
01:00 a.m.	-	1	0,0023	•	•	•		0,4444	0,1901			•	0,4075	-	0,2532
02:00 a.m.	'	0,2384	0,0741	•		0,6075	0,533	0,5728	0,3094	0,4442	0,3147	_	-	-	0,2589
03:00 a.m.	,	0,2863	0,1879	0,3993	-	0,6382	•	0,6294	0,4355		0,3418	0,5287			,
04:00 a.m.		1	0,2912	-	-	-		9059,0	0,53	0,462	0,3465	0,5344			
05:00 a.m.	-	ı	0,3464	0,4055	0,2564	-	-	0,6605	0,5561	0,4858				0,1092	
06:00 а.т.	•	-	0,3737	•	0,4014	0,6552		0,6648	,	0,5268	-	•		0,1521	0,2701
07:00 а.т.	0,0708	-	0,4073	,		9;999,0		0,6773	1	0,6062	,	1	,	0,1956	0,2864
08:00 a.m.	0,0941	-	0,433	٠	0,4174	629'0		0,6938	ı	0,6838		,	0,4115	0,2145	0,297
Promedio neto	0,0643	0,169	0,2645	0,2896	0,1982	0,5051	0,2957	0,5207	0,3396	0,3835	0,1971	0,3067	0,3176	0,1146	0,2227
			BI: Baja i	Baja intensidad						VRCIII: V	Vegetación	VRCIII: Vegetación rala, condición III	lición III		

VRCIII: Vegetación rala, condición III (-): sin eescorrentía

Tabla Nº 15. Coeficientes de escorrentía para la Segunda situación VPCII y para intervalos de 2 horas	15. Coe	ficient	es de e	scorren	ıtía pa	ra la	Segun	da situ:	ación	VPCII	y par	a inter	valos (de 2 ho	ras
HORA	Tı	T2	Т3	T4	TS	T6	11	T8	T9	T10	111	F12	H13	114	F15
08:00 a.m.															
10: 00 a.m.											_	_			
12:00 p.m.															
02:00 р.т.															
04:00 p.m.															
06:00 p.m.															
08:00 p.m.														0.0111	
10:00 p.m.														0.0408	
12:00 a.m.			_	_										0.0488	
02:00 a.m.					0,017									1	
04:00 а.т.					0,065						!	_	0,048	'	
06:00 а.т.					0,092		0.0077	0.0003					0,182	,	}
08:00 a.m.					0,103		0.0419	0.0115				0.0003	0,273	,	
Promedio															ļ
neto					0,069		0.0248	0.0248 0.0059				0.0003	0.0003 0,168 0.0336	0.0336	

VPCII: Vegetación plena, condición II T1: Tormenta 1 (-): sin escorrentía

AI: Alta intensidad

					-								i		
HORA	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11	T12	T13	T14	T15
08:00 a.m.															
10: 00 а.т.															
12:00 p.m.															
02:00 p.m.											0.0299			0.0957	
04:00 p.m.				0.0357		0.0011					0.1281			0.3011	
06:00 p.m.	0.0001			0.154		0.0111		6E-06			0.1584			0.3678	0.0056
08:00 p.m.	0.0674			0.2609	0,093	0.0474	0.0002	0.0274			0.1855			0.4175	0.1417
10:00 р.т.	0.1648	0.0002	0.0054	0.3228	0,193	0.1303	0.0876	0.0591		0.0607	0.2174		0,008	0.4543	0.2359
12:00 а.т.	0.2365	0.0777	0.1014	-	0,315	0.1951	0.2357	0.1323		0.1915	0.2508	0.0026	0,154	0.4628	0.2621
02:00 а.т.	0.3124	0.2401	0.2071	0.337	0,424	0.2235	0.3435	0.271		0.2519	0.2909	0.0686	0,33	1	0.2791
04:00 а.т.	0.3586	0.3481	0.2824	١	0,48	0.2513	ı	0.367		-	0.3171	0.1578	0,461	-	0.2818
06:00 а.т.	•	0.3753	0.3229	•,	0,508	0.296	0.4113	0.4029	0.0031	0.2622	٠	0.2566	0,591	1	0.2854
08:00 a.m.	-	0.4215	0.3524	,	0,519	0.3306	0.4554	0.4221	0.1089	0.2692	0.3196	0.3645	0,668	,	ı
Promedio															
neto	0.19	0.2438	0.2438 0.2119	0.2221	0,362	0.1652	0.2556	0.2556 0.2102	0.056	0.2071 0.2108	0.2108	0.17	0,369	0.3499	0.2131

VPCIII: Vegetación plena, condición III TI: Tormenta 1 (-): sin escorrentía

AI: Alta intensidad

Tabla Nº 17. Coefici	17. Coef	ficient	es de	ientes de escorrentía para la Cuarta situación VACI y para intervalos de 2 horas	ntía pa	ara la (Cuarta	situac	ión V	ACI y	para i	nterva	los de	2 hora	ø
HORA	T1	T2	T3	T4	TS	T6	11	T8	61	T10	T11	T12	T13	T14	T15
08:00 a.m.															
10: 00 a.m.	,														
12:00 р.т.															
02:00 p.m.															
04:00 p.m.			j												
06:00 p.m.															
08:00 p.m.															İ
10:00 p.m.															
12:00 a.m.															
02:00 a.m.															
04:00 a.m.													90- <u>39</u>		
06:00 a.m.													0,077		
08:00 a.m.					0,004								0,164		
Promedio.					0.004								000		
					- >>6>	_			_	_		_	255	<u></u>	

VACI: Vegetación actual, condición I T1: Tormenta 1

AI: Alta intensidad

9
ŗ
ĭ
~
de
S
9
8
ē
Ī
<u> </u>
ar
2
>
具
VACII
Ş
ac
Ē
S
ta
ij
₹
7
Ξ
Ľ
pa
æ
Ħ
ē
Ē
2
S
þ
S
ള
e
<u>:</u>
Ę
Ĉ
$\overline{}$
Š
7
Tabla
<u>[a</u>

HORA	TI	T2	13	T4	T5	T6	T7	T8	L19	T10	T11	T12	T13	T14	T15
08:00 a.m.															
10: 00 a.m.															
12:00 p.m.															
02:00 p.m.														0,016	
04:00 p.m.														0,142	
06:00 p.m.				0,016							600'0			0,207	
.m.d 00:80				0,104							0,034			0,257	0,017
10:00 p.m.	0,018			0,163	0,041	0,005	5E-04				0,063			0,294	80,0
12:00 а.т.	0,081		7E-04		0,155	0,042	80,0	800'0		0,04	0,094		970,0	0,303	0,105
02:00 a.m.	0,153	0,085	0,054	0,176	0,264	690'0	0,183	0,113		0,095	0,132		0,171	-	0,121
04:00 a.m.	0,198	0,187	0,124		0,321	0,095	,	0,206			0,157	0,015	0,302		0,123
06:00 а.т.		0,214	0,163		0,351	0,137	0,25	0,242		0,105		0,1	0,442	,	0,127
08:00 а.т.		0,261	0,192	•	0,362	0,17	0,296	0,261	900'0	0,111	0,16	0,204	0,53		
Promedio. neto	0,112	0,187	0,107	0,115	0,249	980'0	0,162	0,166	900'0	0,088	0,093	0,106	0,294	0,203	0,095
VACII: Vegetación actual, condición II	ción actual,	condición II			AI: Alta i	AI: Alta intensidad									

VACII:Vegetación actual, condición II T1: Tormenta 1 (-): sin escorrentía

0.012	HORA	Ε	13	1	T4	L	T,	4	<u>.</u> E	o.E	T.10	! E	11.0	11.7	11.1	7.5
Ma.m. 0.012 0.0004 0.0008 0.00699 0.00699 Dp.m. 0.1043 0.1404 0.2891 0.0008 0.00699 0.00699 Dp.m. 0.1043 0.1404 0.2891 0.0004 0.0064 0.0069 0.00699 Dp.m. 0.2143 0.0012 0.0385 0.3755 0.3402 0.2041 0.0161 0.4992 0.0077 Dp.m. 0.2143 0.0012 0.0385 0.0592 0.5442 0.217 0.3764 0.0681 0.3004 0.1505 0.509 0.007 Dp.m. 0.4159 0.1318 0.1552 0.6017 0,439 0.3348 0.2516 0.3764 0.1504 0.2695 0.5397 0.1505 0.007 Dp.m. 0.5149 0.2182 0.3481 0.4324 0.4811 0.4326 0.5394 0.4071 0.5695 0.5397 0.5397 0.5093 0.0007 Da.m. 0.6445 0.5254 0.645 0.7284 0.6594 0.6699 0.6	08:00 a.m.					3	2		2		211		7117	CIT	1114	
Op.m. 0.1043 0.1382 0.0008 0.0669 0.0499 Period Op.m. 0.1043 0.1404 0.2891 0.0864 0.0864 0.0341 0.341 Period Op.m. 0.2143 0.0012 0.3752 0.3752 0.3754 0.0681 0.2041 0.0161 0.4792 0.007 Op.m. 0.2143 0.0035 0.5042 0.217 0.3344 0.0681 0.304 0.1505 0.509 0.007 Op.m. 0.4159 0.1318 0.1552 0.6017 0,439 0.2344 0.0681 0.3044 0.1505 0.509 0.007 Op.m. 0.4159 0.1318 0.1552 0.6017 0,436 0.2516 0.376 0.509 0.539 0.007 0.1505 0.509 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007	10: 00 a.m.						0.0004									
O p.m. 0.1043 0.1404 0.2891 0.0864 0.341 0.3402 O p.m. 0.2143 0.0012 0.0355 0.3402 0.2691 0.2041 0.0161 0.4792 0.007 O p.m. 0.3051 0.0385 0.0592 0.5342 0.2348 0.2616 0.3765 0.5692 0.537 0.3482 0.2516 0.3726 0.1505 0.509 0.007 O p.m. 0.4159 0.1318 0.1552 0.6017 0,438 0.2516 0.3726 0.2695 0.5037 0.5693 0.3726 0.3766 0.5394 0.4827 0.4071 0.5693 0.0593 0.5694 0.5486 0.5694 0.5694 0.6693 0.0002 0.5934 0.311 0.5632 0.5642 0.7786 0.5694 0.6693 0.0002 0.5934 0.5794 0.4827 0.6834 0.6783 0.6784 0.5784 0.5794 0.6784 0.5794 0.5694 0.6693 0.6093 0.0002 0.5934 0.5175 0.6485 0.678	12:00 p.m.	0.012					0.1382		0.0008			0.0699			0.0488	
Op.m. 0.2143 0.0012 0.0355 0.3402 0.2041 0.02041 0.0161 0.4792 0.007 Op.m. 0.3051 0.0385 0.0592 0.5042 0.217 0.3544 0.0681 0.3044 0.1505 0.5095 0.5397 0.007 Op.m. 0.4159 0.1318 0.1552 0.6017 0,439 0.3948 0.2516 0.3726 0.5095 0.5347 0.007 Op.m. 0.5149 0.2752 0.6017 0,439 0.3948 0.2516 0.3726 0.2695 0.5347 0.5039 0.5039 0.5039 0.5039 0.5039 0.5039 0.5039 0.6039 0.0002 0.5034 0.5039<	02:00 р.т.	0.1043			0.1404		0.2891		0.0864			0.341			0.419	0.0004
0.4159 0.0385 0.0592 0.5047 0.217 0.3544 0.0681 0.3064 0.1505 0.509 0.509 0.007 Op.m. 0.4159 0.1318 0.1552 0.6017 0,439 0.3948 0.2516 0.3726 0.2695 0.5347 0.152 Op.m. 0.5149 0.2152 0.641 0,439 0.348 0.2516 0.3726 0.2695 0.5347 0.152 Op.m. 0.5149 0.2752 0.3018 0.653 0.542 0.4811 0.4368 0.4077 0.2693 0.0203 0.5397 0.5394 0.3101 0.502 O.am. 0.5808 0.4266 0.4515 - 0,646 0.5394 0.669 0.6098 0.0002 0.5934 0.517 0.503 O.am. 0.6808 0.6728 0.653 0.7794 0.687 0.7794 - 0.6483 0.6793 0.7194 0.7136 0.3932 0.6483 0.6393 0.6934 0.6483 0.6934 0.6483	04:00 p.m.	0.2143	0.0012	0.0022	0.3755		0.3402		0.2041		0.0161	0.4792			0.6352	0.0587
Op.m. 0.4159 0.1318 0.1552 0.6017 0,439 0.2316 0.2316 0.2469 0.5216 0.3726 0.6495 0.5347 0.5139 0.0509 <th>06:00 p.m.</th> <td>0.3051</td> <td>0.0385</td> <td>0.0592</td> <td>0.5042</td> <td>0,217</td> <td>0.3544</td> <td>0.0681</td> <td>0.3004</td> <td></td> <td>0.1505</td> <td>0.509</td> <td></td> <td>0.007</td> <td>0.6877</td> <td>0.2633</td>	06:00 p.m.	0.3051	0.0385	0.0592	0.5042	0,217	0.3544	0.0681	0.3004		0.1505	0.509		0.007	0.6877	0.2633
Dp.m. 0.5149 0.2752 0.308 0.653 0,542 0.4811 0.4368 0.4077 0.4071 0.5639 0.0821 0,319 Dam. 0.5808 0.4266 0.4515 - 0,646 0.5436 0.5794 0.4827 0.5397 0.5934 0.3011 0,502 Da.m. 0.6808 0.6728 0.728 0.5694 0.6699 0.6098 0.0002 0.5943 0.6717 0.4175 0.583 Da.m. - 0.6934 0.6531 - 0,784 0.6313 0.7194 0.7136 0.392 0.6032 0.598 0.588 Da.m. - 0.6934 0.6531 - 0,784 0.6313 0.7194 0.7136 0.392 0.6032 0.608 <t< th=""><th>08:00 p.m.</th><td>0.4159</td><td></td><td>0.1552</td><td>0.6017</td><td>0,439</td><td>0.3948</td><td>0.2516</td><td>0.3726</td><td></td><td>0.2695</td><td>0.5347</td><td></td><td>0,152</td><td>0.7238</td><td>0.4913</td></t<>	08:00 p.m.	0.4159		0.1552	0.6017	0,439	0.3948	0.2516	0.3726		0.2695	0.5347		0,152	0.7238	0.4913
Da.m. 0.5808 0.4266 0.4515 - 0,646 0.5436 0.5794 0.4827 0.5397 0.5934 0.3011 0,502 Da.m. 0.6445 0.5826 0.5543 0.6642 0,728 0.5694 0.669 0.6098 0.0002 0.5943 0.6272 0.4175 0,658 Da.m. - 0.6808 0.6728 0.6642 0,766 0.5939 - 0.687 0.1794 - 0.6485 0.5081 0,753 Da.m. - 0.6934 0.6531 - 0,7764 0.7136 0.7136 0.3392 0.6032 - 0.598 0,833 Da.m. - 0.7265 0.6761 - 0,7784 0.6512 0.7136 0.7136 0.3392 0.6091 0.6598 0,874 Da.m. - 0.7265 0.6761 - 0,794 0.7136 0.7136 0.6091 0.6598 0,874 Da.m. - 0.7265 0.4898 0,614 <t< th=""><th>10:00 p.m.</th><td>0.5149</td><td>0.2752</td><td>0.308</td><td>0.653</td><td>0,542</td><td>0.4811</td><td>0.4368</td><td>0.4077</td><td></td><td>0.4071</td><td>0.5639</td><td>0.0821</td><td>0,319</td><td>0.7493</td><td>0.5804</td></t<>	10:00 p.m.	0.5149	0.2752	0.308	0.653	0,542	0.4811	0.4368	0.4077		0.4071	0.5639	0.0821	0,319	0.7493	0.5804
Da.m. 0.6445 0.5826 0.5543 0.6642 0,728 0.6594 0.6698 0.6002 0.5943 0.6272 0.4175 0,658 Da.m. 0.6808 0.6728 0.6672 - 0,766 0.5939 - 0.687 0.1794 - 0.6485 0.5081 0,753 Da.m. - 0.6934 0.6531 - 0,784 0.6313 0.7194 0.7136 0.3392 - 0.6485 0.6032 - 0.598 0.833 Da.m. - 0.7265 0.6761 - 0,791 0.6592 0.75 0.7272 0.4583 0.6091 0.6505 0.6849 0,874 III: Vegetación actual, condición III - 0,791 0.4163 0.4963 0.4175 0.2443 0.3987 0.5017 0.4319 0,512	12:00 a.m.	0.5808	0.4266	0.4515	-	0,646	0.5436	0.5794	0.4827		0.5397	0.5934	0.3011	0,502	0.755	0.6031
Da.m. 0.6808 0.6728 0.623 - 0,784 0.6313 - 0.687 0.1794 - 0.6485 0.5081 0,753 Da.m. - 0.6934 0.6531 - 0,784 0.6313 0.7194 0.7136 0.3392 0.6032 - 0.598 0,833 Da.m. - 0.7265 0.6761 - 0,791 0.6592 0.75 0.7272 0.4583 0.6091 0.6809 0.6849 0,874 III: Vegetación actual, condición III: Percentación actual, condición III III: Vegetación actual 0.4163 0.4963 0.4175 0.2443 0.3987 0.5017 0.4319 0,512	02:00 a.m.	0.6445	0.5826	0.5543	0.6642	0,728	0.5694	699.0	8609.0	0.0002	0.5943	0.6272	0.4175	0,658		0.6175
Da.m. - 0.6934 0.6531 - 0,784 0.6313 0.7194 0.7136 0.3392 0.6032 - 0.598 0,833 Da.m. - 0.7265 0.6761 - 0,791 0.6592 0.75 0.7272 0.4583 0.6091 0.6505 0.6849 0,874 nedio 0.3858 0.3943 0.3866 0.4898 0,614 0.4163 0.4963 0.4175 0.2443 0.3987 0.5017 0.4319 0,512 Cormenta 1	04:00 a.m.	0.6808	0.6728	0.62	'	0,766	0.5939	-	0.687	0.1794	-	0.6485	0.5081	0,753	,	0.6198
Da.m. - 0.7265 0.6761 - 0,791 0.6592 0.75 0.7272 0.4583 0.6091 0.6505 0.6849 0,874 nedio 0.3858 0.3943 0.3866 0.4898 0,614 0.4163 0.4963 0.4175 0.2443 0.3987 0.5017 0.4319 0,512 Cormenta 1	06:00 а.ш.	•	0.6934	$\overline{}$	ı	0,784	0.6313	0.7194	0.7136		0.6032	-	0.598	0,833		0.6227
nedio 0.3858 0.3943 0.3866 0.4898 0,614 0.4163 0.4963 0.4175 0.2443 0.3987 0.5017 0.4319 0,512 IIII: Vegetación actual, condición III	08:00 a.m.	•	0.7265	0.6761	1	16,70	0.6592	0.75	0.7272	0.4583	0.6091	0.6505	0.6849	0.874		
n actual, condición III	Promedio neto	0.3858	0.3943		0.4898	0,614	0.4163	0.4963	0.4175	0.2443	0.3987	0.5017		0.512	0.5741	0.4286
	VACIII: Veg	getación actua	l, condició	JII us												
	(-): sin escorrentia	rentís				AI: Alto i	AI. Alta intensidad									

DIA IN AU	I abla IV 20: Confirmed and in this first		1	1	-	 - 	ا	1.	T.1.2	113	T14	T15
 - 	1	1 T	T.S T	T6 T7	<u>e</u>	Т9	01.1	111	117			
HORA					_			_			_	
08:00 a.m.					+	+	-	-				<u> </u>
,			_			_		-	1			
10: 00 a.m.			† -			_	_			_		
12:00 p.m.			1	-	+		-	-	L	_		
		_			-		+		-	-		_
02:00 p.m.						_			_			
04:00 p.m.		-	†		+	-		+				
06:00 n.m.					-	+	+	+	+	-	600	
									+	-	7000	-
08:00 p.m.		+									0.022	
0:00 p.m.		-			+		-	-	_		0.029	
12:00 a.m.					+		+	-	-	_	-	_
-											- -	+
02:00 a.m.			1		-	-				0,031	•	
04.00 a.m.			0,056	-	+		+	-	-	12.5		_
			0.072	- 18	8E-04			$\frac{1}{1}$	- -	0,101	-	+
06:00 а.ш.			2000		0.00	18-05				0,252	-	
08:00 a.m.	0.005	-	0,083	5	+	20-71		-	 -	_		_
Promedio			1000	_	6100	1E-05				0,148	8 0.018	_

VRCI: Vegetación rala, condición I T1: Tormenta 1 (-): sin escorrentía

AI: Alta intensidad

as.	T15
e 2 hor	T14
valos de 2 horas.	T13
ı interva	т1,
y para	-
	21.0
<u>:</u>	O.L.
tava situa	Ş.
Octav	L
a para la	L
Ħ	
scorren	نا
es de e	
Coeficient	
٠.	
Tabla Nº 21	<u> </u>
Tabla	

1 10000							Ī		ĺ				i		
HORA	E	T2	T3	T4	TS	Т6	T7	T8	T9	T10	T11	T12	T13	T14	T15
08:00 a.m.															
10: 00 a.m.															
12:00 p.m.															
02:00 n.m.											0.007			0.056	
04:00 n.m.				0.005							0.067			0.236	
06-90 n.m.				0.092							0.096			0.303	
08:00 p.m.	0.02			0.196	0,034	0.003					0.123			0.353	0.081
10:00 n.m.	0.103			0.258	0,13	690.0	0.035	0.007		0.019	0.154			0.391	0.172
12:00 a.m.	0.172	0.027	0.043	,	0,25	0.132	0.172	0.071		0.129	0.187		0,092	0.399	0.198
02:00 a.m.	0.247	0.176	0.144	0.272	0,36	0.16	0.278	0.207		0.188	0.226	0.016	0,266	'	0.214
04:00 a.m.	0.294	0.283	0.218	'	0,417	0.187	-	0.302		-	0.252	0.096	0,398	'	0.217
06:00 a.m.		0.31	0.258	,	0,446	0.231	0.347	0.338		0.198		0.192	0,533	'	0.221
08:00 a.m.	•	0.357	0.287	'	0,457	0.266	0.392	0.358	0.053	0.205	0.255	0.3	0,615		•
Promedio neto	0.167	0.231	0.19	0.165	0,299	0.15	0.245	0.213	0.053	0.147	0.152	0.151	0,381	0.29	0.184
		11 -77 - 11													

neto 0.167 0.231 VRCII: Vegetación rala, condición II T1: Tormenta 1 (-): sin escorrentía

AI: Alta intensidad

I abla IV 44. Cocilcica															1
HORA	<u> </u>	T ₂	T3	T4	TS	T6	T7	T8	T9	T10	T11	T12	T13	T14	T15
m • 000-80															
10.00						0.027					3E-04				
10: 00 a.m.				9000		0.29	0.024	0.052			0.198			0.153	
12:00 p.m.		0.046		0.286		0.442	0.111	0.236			0.491			0.561	0.054
02:00 p.m.		0.040	0.045	0.524		0.491	0.133	0.358		0.111	0.618			0.749	0.206
04:00 p.m.	1 160	0.184	0.207	0.64	0.39	0.505	0.216	0.453		0.303	0.644		0.08	0.79	0.416
00:00 p.m.	0.561	0.101	0.308	0.722	0.582	0.542	0.405	0.522		0.423	999.0		0.382	0.817	0.628
00:00 p.m.	0.201	0770	0.46	0.763	0.672	0.62	0.58	0.554		0.553	0.691	0.206	0.803	0.836	0.704
10:00 p.m.	0.049	624.0	26.50		0.757	0.674	0 703	0.621		19:0	0.715	0.454	0.983	0.841	0.723
12:00 a.m.	CO/.0	0.371	267.0		0.831	0.605	922.0	0.728	0.042	0.716	0.742	0.563	191,0	-	0.735
02:00 a.m.	0.750	0.700	0.000	0.772	0,970	0.00		0.79	0.331		0.759	0.643	0,839	-	0.736
04:00 a.m.	0./85	0.778	0.763		0.862	0.746	0.814	0.81	0.491	0.723		0.719	0,836	-	0.739
00:00 a.m.	. .	0.819	0.781		0,867	0.768	0.837	0.82	0.599	0.728	0.761	0.788	0,924		
Promedio	E	774 0	┿	0.53	0.725	0.543	0.46	0.54	0.366	0.528	0.572	0.562	0,709	8/9.0	0.549
neto	0.771	0.4/4	⊣	0.25	0,123	4				1					

VRCIII: Vegetación rala ,condición III T1: Tormenta 1 (-): sin escorrentía

AI: Alta intensidad

I and a second					-			l					L		
HORA	II.	T2	Т3	T4	TS	T6	T7	T.8	T9	T10	T11	T12	T13	T14	T15
08:00 a.m.			_												
10: 00 a.m.															
12:00 р.т.				-	_										
02:00 р.т.															
04:00 p.m.						0.0057									
06:00 p.m.										į					<u> </u>
08:00 p.m.						0.0341			ļ						
10:00 p.m.						0.0926				į					
12:00 a.m.						'	0.0271								
02:00 a.m.						0.1505	0.0708	0.0564							
04:00 a.m.		ļ 				0.1865		0.1853	0.0213	0.0032				1	_
06:00 а.т.		i	_			0.2072	'	0.2161	0.0945	0.0531					_
08:00 a.m.				_		0.2259		0.2439	-	0.1931					4
Promedio						0.1289	0.1289 0.0489 0.1754 0.0579 0.0831	0.1754	0.0579	0.0831			_		
nero	licto		 - -												

VACIII: Vegetación actual, condición III T1: Tormenta 1 (-): sin escorrentía

BI: Baja intensidad

					İ										
HORA	Ë	T2	T3		TS	T6	T7	T8	T9	T10	T11	T12	T13	T14	T15
08:00 a.m.							†								
10: 00 a.m.															
12:00 n.m.			ļ			0.02									
02:00 n.m.						0.118				0.001					
04:00 n.m.						0.145				0.04					
m - 00:90						,	_			0.069					
08:00 p.m.				0.007		0.179				0.09		0.02	0.003		
10.00 m m				0.04		0.242	0.036			0.111		0.123	0.023		
13:00 p.m.							0.1	0.003		•		0.194	0.058		
03.00 a.m.		_				0.303	0.219	0.187	0.003	0.124	0.017	,	0.092	-	
04.00 s m			0.001	0.044		0.34		0.339	0.139	0.142	0.042	0.218	'		
06.00 a m.			0.046	0.051	0.018	0.361		0.37	0.244	0.2	•	1	•		
08:00 a.m.			,	'	0.102	0.38	-	0.398	-	-		•	960.0		
Promedio			0.024	0.036	0.06	0.232	0.085	0.259	0.129	0.097	0.03	0.139	0.055		
neto		_	0.024	0000	2000										

VRCIII: Vegetación rala ,condición III T1: Tormenta 1 (-): sin escorrentía

BI: Baja intensidad

Tabla Nº 25. Coeficientes de escorrentía para la Tercera situación VPCIII y para intervalos de 4 horas.

HORA	Τι	T2	Т3	T4	T5	T6	17	18 T	6L	T10	T11	T12	T13	T14	Z11
08:00 a.m.															
12:00 p.m.															
04:00 p.m.														0.0025	
08.00 p.m.				3E-05										0.0854	
12:00 а.т.				0.0151 0,014	0,014									0.1391	
04:00 a.m.	0.0176	0.0097	0.0002	0.0002 0.0275 0,128	0,128		0.0335 0.0197	0.0197			0.0016		0,088	-	
08:00 a.m.	•	0.101	0.0333	'	0,194	0.0058	0,194 0.0058 0.1112 0.0967	0.0967			0.0122	0.0122 0.0203 0,303	0,303	-	
Promedio															
neto	0.0176	0.0553	0.0168	0.0168 0.0142 0,112 0.0058 0.0724 0.0582	0,112	0.0058	0.0724	0.0582			0.0069	0.0069 0.0203 0,196 0.0757	0,196	0.0757	

VPCIII: Vegetación plena, condición III T1: Tormenta 1 (-):sin escorrentía

AI: Alta intensidad

Tabla Nº 26. Coeficientes de escorrentía para la Quinta situación VACII y para intervalos de 4 horas. 900,0 T13 T12 0,005 0,041 **T**4 08:00 а.т. 04:00 p.m. [2:00 p.m. 12:00 a.m. 04:00 a.m. 08.00 p.m. HORA

neto
VACII: Vegetación actual, condición II
T1: Tormenta 1
(-): sin escorrentía

08:00 a.m. romedio

AI: Alta intensidad

0,144 0,075

0.0001 0.0001

0,023

Tabla Nº 27. Coeficientes de escorrentía para la Sexta situación VACIII y para intervalos de 4 horas.

HORA	Tı	T2	Т3	T4	T5	T6	T7	T8	T9	T10	T11	T12 T13	T13	T14	Т15
08:00 a.m.															
12:00 p.m.															
04:00 р.т.				0.0257		0.0081					0.0664			0.1819	
08.00 p.m.	0.0705			0.2449	0,05	0.0747	0,05 0.0747 0.0034 0.0305	0.0305		0.0005	0.0005 0.2076			0.4353	0.4353 0.0981
12:00 a.m.	0.2376	0.0658	0.0812	0.0658 0.0812 0.3589 0,311 0.1806 0.2042 0.1613	0,311	0.1806	0.2042	0.1613		0.1587	0.1587 0.2691 0.0005 0,136 0.4902 0.2891	0.0005	0,136	0.4902	0.2891
04:00 a.m.	0.3556	0.3012	0.2773	0.3012 0.2773 0.373 0,478 0.2736 0.3794 0.3365 0.0003 0.2879 0.3292 0.1173 0,432	0,478	0.2736	0.3794	0.3365	0.0003	0.2879	0.3292	0.1173	0,432	ı	0.3175
08:00 a.m.	•	0.4515	0.4515 0.3793	•	0,542	0.3372	0.462	0.4474	0.1282	0,542 0.3372 0.462 0.4474 0.1282 0.2997 0.3557 0.3308 0,636	0.3557	0.3308	0,636	ı	0.3215
Promedio															
neto	0.2212	0.2728	0.2459	28 0.2459 0.2506 0,346 0.1748 0.2623 0.2439 0.0642 0.1867 0.2456 0.1495 0,401 0.3691 0.2566	0,346	0.1748	0.2623	0.2439	0.0642	0.1867	0.2456	0.1495	0,401	0.3691	0.2566

VACIII: Vegetación actual ,condición III T1: Tormenta 1 (-): sin escorrentía

AI: Alta intensidad

Tabla Nº 28. Coeficientes de escorrentía para la Octava situación VRCII v para intervalos de 4 horas.

rabia iv 20: Cochicheles de escollenda para la Octava situación viveri y para intervados de 7 noi ass	-000	77171	, ,		m/ mm	1 10 10	2 2 2 7	Strate			. m . m .	127	2011	T 1101	
HORA	Τı	7.7	T3	T4	T5	Т6	177	Т8	Т9	T10	T11	T12	T13	T14	T15
08:00 а.т.									,						
12:00 p.m.															
04:00 p.m.															
08.00 p.m.														0.028	
12:00 a.m.														0.078	
04:00 a.m.					0,068		6E-04	0.001					0,044	-	
08:00 a.m.		0.041	2E-05		0,13		0.051	0.037				0.002	0,238		
Promedio		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					5 40 0								
neto		0.041	2E-02		660.0		0.020	0.019				0.007	0.141 - 0.053	0.053	

VRCII: Vegetación rala, condición II
T1: Tormenta 1
(-): sin escorrentía

AI: Alta intensidad

				-											
HORA	T1	T2	T3	T4	T5	T6	17	78 T	T9	T10	T11	T12	T13	T14	T15
08:00 a.m.															
12:00 p.m.						800.0					0.002			3E-04	
04:00 p.m.	0.028			0.105	Ŷ	0.134		0.023			0.198		_	0.322	
08.00 p.m.	0.215	0.004	0.014	0.398	0,15	0.223	0.062	0.168		90:0	0.362		0.01	0.579	0.221
12:00 a.m.	0.391	0.198	0.221	0.509	0,463	0.334	0.357	0.314		•	0.423	0.039	0.282	0.628	0.443
04:00 a.m.	0.506	0.453	0.431	0.522	0,617	0.427	0.528	0.487	0.032	0.441	0.481	0.268	0,575	•	0.47
08:00 a.m.	'	0.594	0.528	ı	0,672	0.489	0.603	0.59	0.279	0.453	0.506	0.482	0,749	•	
Promedio															
neto	0.285	0.312	0.298	0.384	0,476	0.269	0.387	0.387 0.317	0.155		0.318 0.329	0.263	0,404 0.382	0.382	0.378

VRCIII: Vegetación rala ,condición III T1: Tormenta 1 (-): sin escorrentía

AI: Alta intensidad

Tabla Nº 30. Coeficientes de escorrentía para la Novena situación VRCIII y para intervalos de 4 horas.

furnity management and an analysis of the second se															
HORA	T1	T2	T.3	T4	TS	T6	T7	T8	T9	T10	T11	T12	T13	T14	T15
08:00 a.m.															
12:00 р.т.															
04:00 p.m.															
08.00 p.m.															
12:00 a.m.												_			
04:00 a.m.						0.019		0.006							
08:00 a.m.						0.066		0.078		0.034					
Promedio															
neto						0.042		0.042		0.034					
															ļ

VRCIII: Vegetación rala ,condición III T1: Tormenta 1

BI: Baja intensidad

APÉNDICE VI

Pendiente media de Mociornita

APÉNDICE VI CÁLCULO DE LA PENDIENTE MEDIA DE MOCIORNITA

$$S = \frac{h\left(\frac{Lo}{2} + \sum_{i=1}^{n-1} Li + \frac{Ln}{2}\right)}{A}$$

Donde:

h = Diferencia de altura entre curvas de nivel (m)

Lo = Longitud de la curva de nivel de menor cota (m)

Ln = Longitud de la curva de nivel de mayor cota (m)

Li = Longitud de las curvas de nivel intermedias (m)

A =Área de la cuenca (m^2)

Es así como, se muestra a continuación el cálculo de la pendiente media de Mociornita:

$$S = \frac{25(m) \left[\frac{89483,8}{2} (m) + 2404043,8(m) + \frac{309}{2} (m) \right]}{211780090,49(m2)}$$

$$S = 0.286$$

$$S = 28.6\%$$

APÉNDICE VII

Análisis de regresión y supuestos para el Segundo escenario VPCII

APÉNDICE VII

ANÁLISIS DE REGRESIÓN PARA EL SEGUNDO ESCENARIO VPCII.

Tabla 1: Modelo : Y = a0 + a1X

Variable Dep	endiente: Y		Variable Indepen	diente: X	
Parámetro	Estimación	Error Estándar	Estadístico-t	Valor- p	
Intercepto	-0,0697121	0,008612548	-8,0915	0,0000	
Pendiente	0,00520673	0,000163613	31,8234	0,000	

Tabla 2: Análisis de Varianza.

Fuente	Suma de Cuadrados	g.1.	C.Medios	F	Valor-p	
Modelo	0,825028	1	0,825028	1012,73	0,0000	
Residual	0,0228104	28	0,000814658			
Total	0,847839	29	<u> </u>			

Coeficiente de Determinación R²

: 97,31 %

Coeficiente de Determinación ajustado R²: 97,32 %

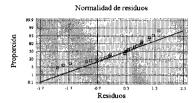
Error Estándar de Estimación

: 0,0285422

Estadístico Durbin - Watson

: 1,57875

SUPUESTOS DE REGRESIÓN


1.- Supuesto de Normalidad

a .- Test de Kolmogorov-Smirnov

Estimación estadístico Kolmogorov DPLUS	=	0.0820955
Estimación estadístico Kolmogorov DMINUS	=	0.199799
Estimación completa Estadístico DN	=	0.199799
Valor-p aproximado	=	0.182382

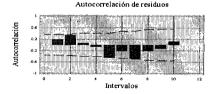

Observando los resultados del test Kolmogorov-Smirnov, se deduce que existe normalidad de los residuos debido a que el valor-p (0,182382) es mayor a α (0,05).

b.- Gráfico de normalidad

En el gráfico anterior, se puede apreciar que los residuos están homogéneamente distribuidos sobre la recta, por lo que el supuesto de normalidad se estaría cumpliendo.

2.- Supuesto de Homocedasticidad

La gráfica de los residuos respecto a los valores estimados, muestra que no existe un patrón de comportamiento sistemático en los residuos, por lo que no hay evidencia de heterocedasticidad.


3.- Supuesto de No- Autocorrelación

a .- Test Durbin -Watson

.d= 1,57875 ;
$$d_L$$
= 1,352 , $d_{u=}$ 1,489 $d_u < d < 4$ - d_u 1,489 < 1,57875 < 2,511

El test de Durbin- Watson, indica que el valor d, se encuentra en la región de no rechazo, por lo que se concluye que no existe autocorrelación positiva o negativa.

b.- Gráfico de No- Autocorrelación

En la gráfica se puede apreciar que existe levemente una frecuencia fuera del intervalo, por lo que no habría presencia de autocorrelación.

APÉNDICE VIII

Análisis de regresión y supuestos para el Tercer escenario VPCIII

APÉNDICE VIII

ANÁLISIS DE REGRESIÓN PARA EL TERCER ESCENARIO VPCIII

Tabla 1: Modelo : Y = a0 + a1 sqrtX

Variable Dep	endiente: Y		Variable Independie	nte: X	
Parámetro	Estimación	Error Estándar	Estadístico-t	Valor- p	
Intercepto	-0,387769	0,0266954	-14,5257	0,0000	
Pendiente	0,126146	0,00412247	30,6022	0,0000	

Tabla 2: Análisis de Varianza.

Fuente	Suma de Cuadrados	g.l.	C.Medios	F	Valor-p	
Modelo	3,04528	1	3,04528	936,49	0,0000	
Residual	0,0910504	28	0,0032518			
Total	3,13633	29		-		

Coeficiente de Determinación R^2 : 97,09 % Coeficiente de Determinación ajustado R^2 : 96,99 % Error Estándar de Estimación : 0,0570245 Estadístico Durbin – Watson : 1,55988

SUPUESTOS DE REGRESIÓN

1.- Supuesto de Normalidad

a .- Test de Kolmogorov-Smirnov

Estimación estadístico Kolmogorov DPLUS	=	0.11791
Estimación estadístico Kolmogorov DMINUS	=	0.167675
Estimación completa Estadístico DN	==	0.167675
Valor-p aproximado	=	0.371361

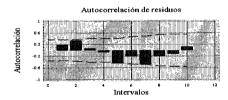
Observando los resultados del test Kolmogorov-Smirnov, se deduce que existe normalidad de los residuos debido a que el valor-p (0,371361) es mayor a α (0,05).

b.- Gráfico de normalidad

En el gráfico anterior, se puede apreciar que los residuos están homogéneamente distribuidos sobre la recta, por lo que el supuesto de normalidad se estaría cumpliendo.

2.- Supuesto de Homocedasticidad

La gráfica de los residuos respecto a los valores estimados, muestra que no existe un patrón de comportamiento sistemático en los residuos, por lo que no hay evidencia de heterocedasticidad.


3.- Supuesto de No- Autocorrelación

a.- Test Durbin -Watson

$$\begin{array}{c} \textbf{a.-1651 bit - Watson} \\ \textbf{.d=1,55988 ; d_L=1,352 , d_{u=}1,489} \\ \textbf{d_u < d < 4-d_u} \\ \textbf{1,489 < 1,55988 < 2,511} \\ \end{array}$$

El test de Durbin- Watson, indica que el valor d, se encuentra en la región de no rechazo, por lo que se concluye que no existe autocorrelación positiva o negativa.

b.- Gráfico de No- Autocorrelación

En la gráfica se puede apreciar que existe levemente una frecuencia fuera del intervalo, por lo que no habría presencia de autocorrelación.

APÉNDICE IX

Análisis de regresión y supuestos para el Cuarto escenario VACI

APÉNDICE IX

ANÁLISIS DE REGRESIÓN PARA EL CUARTO ESCENARIO VACI.

Tabla 1: Modelo : Y = a0 + a1X

Variable Dependiente: Y		Variable Independiente: X				
Parámetro	Estimación	Error Estándar	Estadístico-t	Valor- p		
Intercepto	-0,0605934	0,0108842	-5,56712	0,0000		
Pendiente	0,00367608	0,000206697	17,7849	0,0000		

Tabla 2: Análisis de Varianza.

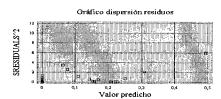
Fuente	Suma de Cuadrados	g.l.	C.Medios	F	Valor-p	
Modelo	0,411252	1	0,411252	316,20	0,0000	
Residual	0,0364952	28	0,00130019			
Total	0,447657	29				

Coeficiente de Determinación R^2 : 91,87 % Coeficiente de Determinación ajustado R^2 : 91,58 % Error Estándar de Estimación : 0,0360581 Estadístico Durbin – Watson : 1,5735

SUPUESTOS DE REGRESIÓN

1.- Supuesto de Normalidad

a.- Test de Kolmogorov-Smirnov

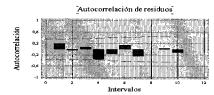

Estimación estadístico Kolmogorov DPLUS	=	0.0998779
Estimación estadístico Kolmogorov DMINUS	=	0.150566
Estimación completa Estadístico DN	=	0.150566
Valor-p aproximado	=	0.517543

Observando los resultados del test Kolmogorov-Smirnov, se deduce que existe normalidad de los residuos debido a que el valor-p (0,517543) es mayor a α (0,05).

En el gráfico anterior, se puede apreciar que los residuos están homogéneamente distribuidos sobre la recta, por lo que el supuesto de normalidad se estaría cumpliendo.

2.- Supuesto de Homocedasticidad

La gráfica de los residuos respecto a los valores estimados, muestra que no existe un patrón de comportamiento sistemático en los residuos, por lo que no hay evidencia de heterocedasticidad.


3.- Supuesto de No- Autocorrelación

a.- Test Durbin -Watson

$$\begin{array}{c} .d{=}\;1{,}5735\;;\;d_L{=}\;1{,}352\;,\;d_{\;u{=}}\;1{,}489\\ \qquad \qquad d_u < d \; < 4{-}\;\;d_u\\ \qquad \qquad 1{,}489 < 1{,}5735 < 2{,}511 \end{array}$$

El test de Durbin- Watson, indica que el valor d, se encuentra en la región de no rechazo, por lo que se concluye que no existe autocorrelación positiva o negativa.

b.- Gráfico de No- Autocorrelación

APÉNDICE X Análisis de regresión y supuestos para el Quinto escenario VACII

UNIVERSIDAD DE TALCA BIBLIOTECA CENTRAL

APÉNDICE X

ANÁLISIS DE REGRESIÓN PARA EL QUINTO ESCENARIO VACII

Tabla 1: Modelo : $Y = (a0 + a1X)^2$

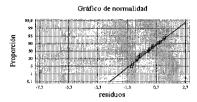
Variable Dependiente: Y		Variable Independiente: X			
Parámetro	Estimación	Error Estándar	Estadístico-t	Valor- p	
Intercepto	-0,0459641	0,0376706	-1,22016	0,2326	
Pendiente	0,0104331	0,000715387	14,5838	0,0000	

Tabla 2: Análisis de Varianza.

Fuente	Suma de Cuadrados	g.1.	C.Medios	F	Valor-p	
Modelo	3,31255	1	3,31255	212,69	0,0000	
Residual	0,436093	28	0,0155748			
Total	3,74865	29				

Coeficiente de Determinación R^2 : 88,37 % Coeficiente de Determinación ajustado R^2 : 87,95 % Error Estándar de Estimación : 0,0903497

Estadístico Durbin – Watson : 1,7334


SUPUESTOS DE REGRESIÓN

1.- Supuesto de Normalidad

a.- Test de Kolmogorov-Smirnov

Estimación estadístico Kolmogorov DPLUS = 0.155003 Estimación estadístico Kolmogorov DMINUS = 0.246817 Estimación completa Estadístico DN = 0.246817 Valor-p aproximado = 0.052

Observando los resultados del test Kolmogorov-Smirnov, se deduce que existe normalidad de los residuos debido a que el valor-p (0,052) es mayor a α (0,05).

En el gráfico anterior, se puede apreciar que los residuos están homogéneamente distribuidos sobre la recta, por lo que el supuesto de normalidad se estaría cumpliendo.

2.- Supuesto de Homocedasticidad

La gráfica de los residuos respecto a los valores estimados, muestra que no existe un patrón de comportamiento sistemático en los residuos, por lo que no hay evidencia de heterocedasticidad.

3.- Supuesto de No- Autocorrelación

a.- Test Durbin -Watson

$$\begin{array}{c} .d{=}\;1{,}7334\;;\;d_{L}{=}\;1{,}352\;,\;d_{\;u{=}}\;1{,}489\\ d_{u}{<}\;d\;{<}\;4{-}\;d_{u}\\ 1{,}489{<}\;1{,}7334{<}\;2{,}511 \end{array}$$

El test de Durbin- Watson, indica que el valor d, se encuentra en la región de no rechazo, por lo que se concluye que no existe autocorrelación positiva o negativa.

b.- Gráfico de No- Autocorrelación

APÉNDICE XI Análisis de regresión y supuestos para el Sexto escenario VACIII

APÉNDICE XI

ANÁLISIS DE REGRESIÓN PARA EL SEXTO ESCENARIO VACIII

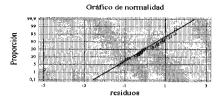
Tabla 1: Modelo : $Y = a0 + a1 \log X$

Variable Dependiente: Y		Variable Independiente: X				
Parámetro	Estimación	Error Estándar	Estadístico-t	Valor- p		
Intercepto	-0,574467	0,0302963	-18,9617	0,0000		
Pendiente	0,344158	0,00866966	39,6968	0,0000		

Tabla 2: Análisis de Varianza.

Fuente	Suma de Cuadrados	g.1.	C.Medios	F	Valor-p	
Modelo	2,93255	1	2,93255	1575,84	0,0000	
Residual	0,0521065	28	0,00186095			
Total	2,98466	29				

Coeficiente de Determinación R^2 : 98,25 % Coeficiente de Determinación ajustado R^2 : 98,19 % Error Estándar de Estimación : 0,0431387 Estadístico Durbin – Watson : 1,56749


SUPUESTOS DE REGRESIÓN

1.- Supuesto de Normalidad

a.- Test de Kolmogorov-Smirnov

Estimación estadístico Kolmogorov DPLUS	=	0.101466
Estimación estadístico Kolmogorov DMINUS	=	0.164441
Estimación completa Estadístico DN	=	0.164441
Valor-p aproximado	=	0.396349

Observando los resultados del test Kolmogorov-Smirnov, se deduce que existe normalidad de los residuos debido a que el valor-p (0,396349) es mayor a α (0,05).

En el gráfico anterior, se puede apreciar que los residuos están homogéneamente distribuidos sobre la recta, por lo que el supuesto de normalidad se estaría cumpliendo.

2.- Supuesto de Homocedasticidad


La gráfica de los residuos respecto a los valores estimados, muestra que no existe un patrón de comportamiento sistemático en los residuos, por lo que no hay evidencia de heterocedasticidad.

3.- Supuesto de No- Autocorrelación

a.- Test Durbin -Watson

El test de Durbin- Watson, indica que el valor d, se encuentra en la región de no rechazo, por lo que se concluye que no existe autocorrelación positiva o negativa.

b.- Gráfico de No- Autocorrelación

APÉNDICE XII

Análisis de regresión y supuestos para el Séptimo escenario VRCI

APÉNDICE XII

ANÁLISIS DE REGRESIÓN PARA EL SÉPTIMO ESCENARIO VRCI

Tabla 1: Modelo : Y = a0 + a1X

Variable Dependiente: Y			Variable Independiente: X				
Parámetro	Estimación	Error Estándar	Estadístico-t	Valor- p			
Intercepto	-0,0681395	0,00850395	-8,012169	0,0000			
Pendiente	0,00488989	0,000161495	30,2789	0,000			

Tabla 2: Análisis de Varianza.

Fuente	Suma de Cuadrados	g.l.	C.Medios	F	Valor-p	
Modelo	0,727675	1	0,727675	916,81	0,0000	
Residual	0,0222237	28	0,000793703			
Total	0,749899	29				

Coeficiente de Determinación R²

: 97,04 %

Coeficiente de Determinación ajustado R²: 96,93 %

Error Estándar de Estimación

: 0,0281727

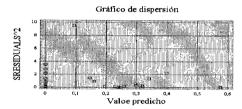
Estadístico Durbin – Watson

: 1,65754

SUPUESTOS DE REGRESIÓN

1.- Supuesto de Normalidad

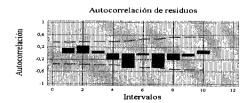
a .- Test de Kolmogorov-Smirnov


Estimación estadístico Kolmogorov DPLUS	=	0.0791752
Estimación estadístico Kolmogorov DMINUS	=	0.130577
Estimación completa Estadístico DN	=	0.130577
Valor-p aproximado	=	0.685807

Observando los resultados del test Kolmogorov-Smirnov, se deduce que existe normalidad de los residuos debido a que el valor-p (0,685807) es mayor a α (0,05).

En el gráfico anterior, se puede apreciar que los residuos están homogéneamente distribuidos sobre la recta, por lo que el supuesto de normalidad se estaría cumpliendo.

2.- Supuesto de Homocedasticidad


La gráfica de los residuos respecto a los valores estimados, muestra que no existe un patrón de comportamiento sistemático en los residuos, por lo que no hay evidencia de heterocedasticidad.

3.- Supuesto de No- Autocorrelación

El test de Durbin- Watson, indica que el valor d, se encuentra en la región de no rechazo, por lo que se concluye que no existe autocorrelación positiva o negativa.

b.- Gráfico de No- Autocorrelación

APÉNDICE XIII

Análisis de regresión y supuestos para el Octavo escenario VRCII

APÉNDICE XIII

ANÁLISIS DE REGRESIÓN PARA EL OCTAVO ESCENARIO VRCII

Tabla 1: Modelo : $Y = (a0 + a1X)^2$

Variable Dep			Variable Independiente: X				
Parámetro	Estimación	Error Estándar	Estadístico-t	Valor-p			
Intercepto	-0.016137	0,0452517	-0,356606	0,0000			
Pendiente	0,0107717	0,000859357	12,5346	0,0000			

Tabla 2: Análisis de Varianza.

Fuente	Suma de Cuadrados	g.l.	C.Medios	<u> </u>	Valor-p
Modelo	3,53106	1	3,53106	157,12	0,0000
Residual	0,629281	28	0,0224743		
Total	4,16035	29			

SUPUESTOS DE REGRESIÓN

1.- Supuesto de Normalidad

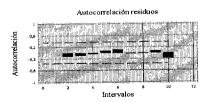
a.- Test de Kolmogorov-Smirnov

Estimación estadístico Kolmogorov DPLUS	=	0.145649
Estimación estadístico Kolmogorov DMINUS	=	0.211701
Estimación completa Estadístico DN	=	0.211701
Valor-p aproximado	=	0.135913

Observando los resultados del test Kolmogorov-Smirnov, se deduce que existe normalidad de los residuos debido a que el valor-p (0,135913) es mayor a α (0,05).

En el gráfico anterior, se puede apreciar que los residuos están homogéneamente distribuidos sobre la recta, por lo que el supuesto de normalidad se estaría cumpliendo.

2.- Supuesto de Homocedasticidad



La gráfica de los residuos respecto a los valores estimados, muestra que no existe un patrón de comportamiento sistemático en los residuos, por lo que no hay evidencia de heterocedasticidad.

3.- Supuesto de No- Autocorrelación

El test de Durbin-Watson, indica que el valor d, se encuentra en la región de no rechazo, por lo que se concluye que no existe autocorrelación positiva o negativa.

b.- Gráfico de No- Autocorrelación

APÉNDICE XIV

Análisis de regresión y supuestos para el Noveno escenario VRCIII

APÉNDICE XIV

ANÁLISIS DE REGRESIÓN PARA EL NOVENO ESCENARIO VRCIII

Tabla 1: Modelo : Y = a0 + a1 sqrt X

Variable Dependiente: Y		Variable Independiente: X				
Parámetro	Estimación	Error Estándar	Estadístico-t	Valor- p		
Intercepto	0,0798527	0,0450661	1,7719	0,0873		
Pendiente	0,101038	0,00695937	14,5182	0,0000		

Tabla 2: Análisis de Varianza.

Fuente	Suma de Cuadrados	g.l.	C.Medios	F	Valor-p	
Modelo	1,95333	1	1,95333	210,78	0,0000	
Residual	0,259482	28	0,00926721			
Total	2,21282	29				

SUPUESTOS DE REGRESIÓN

1.- Supuesto de Normalidad

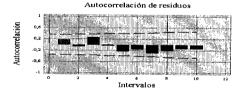
a .- Test de Kolmogorov-Smirnov

Estimación estadístico Kolmogorov DPLUS	=	0.103956
Estimación estadístico Kolmogorov DMINUS	=	0.196421
Estimación completa Estadístico DN	=	0.196421
Valor-p aproximado	=	0.197652

Observando los resultados del test Kolmogorov-Smirnov, se deduce que existe normalidad de los residuos debido a que el valor-p (0,197652) es mayor a α (0,05).

En el gráfico anterior, se puede apreciar que los residuos están homogéneamente distribuidos sobre la recta, por lo que el supuesto de normalidad se estaría cumpliendo.

2.- Supuesto de Homocedasticidad


La gráfica de los residuos respecto a los valores estimados, muestra que no existe un patrón de comportamiento sistemático en los residuos, por lo que no hay evidencia de heterocedasticidad.

3.- Supuesto de No- Autocorrelación

$$\begin{array}{c} \textbf{a.- Test Durbin -Watson} \\ .d=1,57023 \; ; \; d_L=1,352 \; , \; d_{\;u=}1,489 \\ \qquad \qquad \qquad d_u < d \; < 4- \; d_u \\ \qquad \qquad 1,489 < 1,57023 < 2,511 \end{array}$$

El test de Durbin- Watson, indica que el valor d, se encuentra en la región de no rechazo, por lo que se concluye que no existe autocorrelación positiva o negativa.

b.- Gráfico de No- Autocorrelación

ANEXOS

ANEXO I Tablas de Ponce (1989)

ANEXO I Tabla 1

Cubierta del suelo				Números de curva correspondientes a los grupos hidrológicos del suelo			
Clase	Laboreo	Condiciones hidrológicas para la infiltración	Α	В	С	D	
Barbecho	-	-	77	86	91	94	
Cultivos alineados	R	Pobres	72	81	88	91	
	R	Buenas	67	78	85	89	
	C	Pobres	70	79	84	88	
	C	Buenas	65	75	82	86	
	C-T	Pobres	66	74	80	82	
	C – T	Buenas	62	71	78	81	
Cultivos no alineados o con surcos pequeñ	os						
mal definidos	R	Pobres	65	76	84	88	
	R	Buenas	63	75	83	87	
	C	Pobres	63	74	82	85	
	C	Buenas	61	73	81	84	
	C-T	Pobres	61	72	79	82	
	C - T	Buenas	59	70	78	81	
Cultivos densos de leguminosas o prados e	n						
lternativa	R	Pobres	66	77	84	88	
	R	Buenas	58	72	81	85	
	C	Pobres	64	75	83	85	

Tabla 2

	Cubierta del suelo			Números de curva correspondientes a los grupos hidrológicos del suelo			
Clase	Laboreo	Condiciones hidrológicas para la infiltración	A	В	C	D	
	С	Buenas	55	69	78	83	
	C-T	Pobres	63	73	80	83	
	C – T	Buenas	51	67	76	80	
Pastizales (pastos naturales)	-	Pobres	68	79	86	89	
	-	Regulares	49	69	79	84	
	-	Buenas	39	61	74	80	
	C	Pobres	47	67	81	88	
	C	Regulares	25	59	75	83	
	C	Buenas	6	35	70	79	
Prados permanentes	-	-	30	58	71	78	
Montes con pastos (ganadero-forestal)							
	-	Pobres	45	66	77	83	
		Regulares	36	60	73	79	
		Buenas	25	55	70	77	
Bosques (forestales)	-	Muy Pobres	56	75	86	91	
		Pobres	46	68	78	84	
		Regulares	36	60	70	76	
		Buenas	26	52	63	69	
		Muy buenas	15	44	54	61	
Caseríos	-	· -	59	74	82	86	
Caminos en tierra	-	-	72	82	87	89	
Caminos en firme		-	74	84	90	92	

Tabla 3

	Descripción de la hilera					/a
				pondien drológic		
Tipo de cubierta	Tratamiento ⁽²⁾	Estado hidrológico ⁽³⁾	A	B	C	D
Barbecho	Tierra desnuda	-	77	86	91	94
	Rastrojos (CR)	Mala	76	85	90	93
		Buena	74	83	88	9
Cultivo en hilera	Hileras rectas	Mala	72	81	88	91
	(SR)	Buena	67	78	85	89
	SR + CR	Mala	71	80	87	90
		Buena	64	75	82	85
	Por curvas de	Mala	70	79	84	88
	nivel (C)	Buena	65	75	82	86
	C + CR	Mala	69	78	83	87
		Buena	64	74	81	85
	Por curvas de	Mala	66	74	80	82
	nivel y terrazas	Buena	62	71	78	81
	(C y T)					
	C yT+CR	Mala	65	73	79	81
	•	Buena	61	70	77	80
Grano pequeño	SR	Mala	65	76	84	88
		Buena	63	75	83	87
	SR +	Mala	64	75	83	86
	CR					
	C	Buena	60	72	80	84
		Mala	63	74	82	85
		Buena	61	73	81	84
	C + CR	Mala	62	73	81	84
		Buena	60	72	80	83
	СуТ	Mala	61	72	79	82
	-	Buena	59	70	78	81
	C y T + CR	Mala	60	71	78	81
	-	Buena	58	69	77	80
Sembrado en línea o a voleo o pradera d	e					
rotación	SR	Mala	66	77	85	89
		Buena	58	72	81	85
	С	Mala	64	75	83	85
		Buena	55	69	78	83
	СуТ	Mala	63	73	83	85
	-	Buena	51	67		

Notas:

^{(1):} Condiciones de humedad previa y Io= 0,2 S

^{(2):} El NC de los rastrojos se aplica solo si el residuo ocupa la menos un 5% de la superfície a lo largo de todo el año.

^{(3):} El estado hidrológico se basa en una combinación de factores que afectan a la infiltración y la escorrentía, incluyendo:

Densidad y cobertura de las áreas de vegetación.

Cantidad de cubierta a lo largo del año.

Cantidad de hierba o plantación en hileras en rotación.

Porcentaje de cubierta de residuos en la superficie de la tierra (en buenas condiciones hidrológicas es 20%).

Grado de rugosidad de la superficie.

Mala: Estos factores disminuyen la infeltración y tienden a aumentar la escorrentía.

Buena: Estos factores mejoran y superan la infiltración media y tienden a disminuir la escorrentía.

Tabla 4 Número de curva de escorrentía para áreas urbanas⁽¹⁾

Numero de curva de escorrel Descripción de la cubierta		a nara ca	de suelo		
Tipo de cubierta y estado hidrológico	% medio de sup. Impe ⁽²⁾	A	B	С	D
Espacios abiertos (césped, parques, campos de golf, cementerios,	· · · · · · · · · · · · · · · · · · ·		_	_	_
$ect.)^{(3)}$					
Malas condiciones (cubiertas < 50%)		69	79	86	89
Condición media (50 <fcc<75%)< td=""><td></td><td>49</td><td>69</td><td>79</td><td>84</td></fcc<75%)<>		49	69	79	84
Buenas condiciones (F > 75%)		39	61	74	80
Superficies impermeables:					
Aparcamientos pavimentados, tejados, carreteras, etc.		98	98	98	98
Calles asfaltadas y alcantarilladas		98	98	98	98
Cunetas asfaltadas		83	89	92	93
Gravas		76	85	89	91
Lodos		72	82	87	89
Áreas desérticas urbanas:					
Paisajes naturales desérticos (solo superficies permeables) ⁽⁴⁾					
Paisaje desértico artificial (maleza impermeable, leñosas rastreras) (
2-4 cm), capas de arena o grava		63	77	85	88
		96	96	96	96
Distritos urbanos:	85	89	92	94	95
Comercial y de negocios	72	81	88	91	93
Industrial					
Distritos residenciales según tamaño medio					
$< 500 \text{ m}^2$	65	77	85	90	92
1000 m^2	38	61	75	83	87
1350 m ²	30	57	72	81	86
2000 m ²	25	54	70	80	85
4000 m^2	20	51	78	79	84
8000 m ²	12	46	65	77	82
Áreas urbanas en desarrollo					
Superficies recientemente catalogadas (sólo superficies permeables, sin vegetación) ⁽³⁾		77	86	91	94

Notas:

- (1): Condiciones medias de humedad previa Io= 0,2 S.
- (2): El porcentaje medio de superficie impermeable que aparece en la tabla se uso para desarrollar los números de curva compuestos.
- (3): Estos NC son equivalentes a los de los pastos. Los NC compuestos se calculan para otras combinaciones de tipo de cubierta en espacios abiertos.
- (4): Los NC compuestos para paisajes naturales desérticos deben calcularse utilizando los porcentajes de superficie impermeable (NC=98) y superficie permeable.
- (5): Los NC compuestos a usar para el diseño de medidas temporales durante la catalogación deben hallarse utilizando el grado de desarrollo (% superficie impermeable).

Tabla 5 Número de curva de escorrentía para áreas forestales⁽¹⁾

Descripción de la cubierta Nº de curva para cada grupo hidr. de suelo								
Tipo de cubierta y estado hidrológico	Estado hidrológico	A	В	С	D			
Pastos, prados o forraje permanente para pastoreo ⁽²⁾								
	Malo	69	79	86	89			
	Medio	49	69	79	84			
	Bueno	39	61	74	80			
Prados, cubiertos permanentemente con hierba, protegidos del								
pastoreo y normalmente segados para heno (prados de siega)		30	58	71	78			
Matorral, mezcla de matorral y maleza siendo el matorral el	Malo	48	67	77	83			
elemento prioritario ⁽³⁾	Medio	35	56	70	77			
1	Bueno	30	48	55	73			
Mezcla de bosques y hierba (huerto o árboles frutales) ⁽⁵⁾	M-1-	57	72	03	96			
Mezela de bosques y merba (nuerto o arbores frutales)	Malo Medio	57 43	73 65	82 76	86 82			
	Bueno	32	58	72	79			
Bosques ⁽⁶⁾	Malo	45	66	77	83			
Dosques	Medio	45 36	60	73	83 79			
	Bueno	32	55	70	77			
Granjas, construcciones, caminos carreteras y alrededores		59	74	82	86			

Notas:

- (1): Condiciones medias de humedad previa Io= 0,2S
- (2): Malo: < 50% de cubierta de suelo en sitios muy pastoreados sin cubierta de residuos.

Medio: entre 50-75% de cubierta de suelo y no pastoreadas.

Bueno : < 75% de cubierta de suelo y muy poco u ocasionalmente pastoreada.

(3): Malo: < 50% de cubierta de suelo.

Medio: entre 50-75% de cubierta de suelo.

Bueno: < 75% de cubierta de suelo.

- (5): estos NC fueron calculados para superficies con cubiertas del 50% de bosque y 50% de hierba. Otras combinaciones deben calcularse a partir de NC d bosques y de pastos.
- (6): Malo: los residuos, la materia orgánica sin descomponer del bosque, los árboles pequeños y los arbustos se destruyen por pastoreo muy fuerte o quemas regulares.

Medio: Los bosques son pastoreados pero no quemados y la M.O. sin descomponer cubren el suelo.

Bueno: los bosques están protegidos del pastoreo y la M.O. sin descomponer y arbustos cubren el suelo adecuadamente.

Tabla 6 Número de curva de escorrentía para zonas de montaña áridas y semiáridas⁽¹⁾

Descripción de la cubierta		Nº de curva	Nº de curva para cada grupo hidr. de suelo					
Tipo de cubierta	Estado hidrológico	A ⁽³⁾	В	С	D			
Herbácea: Mezcla de hierba, maleza matorral	-							
de bajo crecimiento, siendo el matorral el	Malo		80	87	93			
elemento de menor importancia	Medio		71	81	89			
•	Bueno		62	74	85			
Roble-álamo: Mezcla de garriga, álamo caoba	Malo		66	74	79			
de montaña," bitter brush", arce y otros	Medio		48	57	63			
arbustos	Bueno		30	41	48			
Pinaceas- Juniperus: Pinaceas, Juniperus o	Malo		75	85	89			
ambos con hierba bajo cubierta	Medio		58	73	80			
·	Bueno		41	61	71			
Labiadas con hierba bajo cubierta	Malo		67	80	85			
	Medio		51	63	70			
	Bueno		35	47	55			
Mata desértica: la mayoría de las plantas	Malo	63	77	85	88			
incluyen plantas halófilas, plantas crasas,	Medio	55	72	81	86			
plantas con aceites esenciales	Bueno	49	68	79	84			

Notas:

- (1) Condiciones medias de humedad previa Io= 0,2 S.
- (2) Malo: < 30% de cubierta de suelo Medio: 30-70 % de cubierta de suelo Bueno:> 70% de cubierta de suelo
- (3): Los números de curva del grupo A sólo se han desarrollado para matas desérticas