

Facultad de Ciencias Forestales Escuela de Ingeniería Forestal

ESTIMACIÓN DE FUNCIONES DE DISTRIBUCIÓN DE PROBABILIDAD, PARA CAUDALES MÁXIMOS, EN LA REGIÓN DEL MAULE

MARÍA ALEJANDRA AGUILERA NAVARRO

Memoria para optar al título de INGENIERO FORESTAL

Profesor Guía: Dr. ROBERTO PIZARRO TAPIA

TALCA- CHILE

2007

RESUMEN

El presente estudio aborda la aplicabilidad hidrológica de cuatro modelos probabilísticos, correspondientes a las funciones de Gumbel, Log-Normal, Goodrich y Pearson Tipo III, para series anuales de caudales máximos. El estudio se centró en todas las estaciones de tipo fluvial de la región del Maule, abarcando todos los ríos y las principales cuencas presentes en la región, como son la cuenca del río Mataquito y la cuenca del río Maule, ambas originadas en la Cordillera de los Andes.

Por medio del coeficiente de determinación (R²) y el test de bondad de ajuste de Kolmogorov Smirnov (K-S), fue posible determinar las funciones de distribución de probabilidad que mejor representan a las series de caudales máximos, para la región del Maule.

La función de distribución de probabilidad con la cual los caudales máximos se ven mayormente reflejados, es la función de Gumbel, considerando su uso como altamente confiable, entregando un coeficiente de determinación promedio para todas las estaciones del 96,4% y una aprobación altamente significativa de la prueba de bondad de ajuste Kolmogorov Smirnov. En segundo lugar y con resultados muy similares, se encuentra la función de Goodrich que también puede ser recomendable para su aplicación en cuencas de la Región. Y en tercer lugar, con resultados levemente disímiles, la función, Pearson Tipo III que presentó un coeficiente de determinación promedio del 94,9%, la cual puede ser recomendable solamente para tener una primera estimación del ajuste de valores de caudales máximos.

Finalmente se descarta la función Log-Normal, debido a que dicha función presenta una sobreestimación en los valores de caudales máximos probables, no siendo recomendable su uso para caudales máximos.

SUMARY

The present study deals with the hydrologic applicability of four probabilistic models to annual series of maximum flows. Such models are Gumbel, Log-Normal, Goodrich and Pearson Type III. This study was centred in all fluvial stations of the Region del Maule, embracing all the rivers and main basins present in the Region, such as the Mataquito River basin and the Maule River basin, both originating from the Andes mountain.

By means of the coefficient of determination (R²) and the Kolmogorov Smirnov test (K-S), it was possible to determine the probability distribution function that better represent the series of maximum flows for the Region del Maule.

In terms of the probability distribution function, it is the Gumbel function with which the maximum flows are mostly reflected, considering its use as highly reliable, offering a coefficient of determination average of 96.4 % in all stations and an excellent goodness of fit in the Kolmogorov Smirnov test. In second place, with very similar results, we find the function of Goodrich that is also advisable for application in basins of the Region. In third place, with slightly dissimilar results is the Log-Normal function that presented a coefficient of determination average of 94.9 %, which indicates its use for only a first estimation of the adjustment of values of maximum flows.

Finally the function of Log-Normal is discarded due to that function presenting an over estimation of the probable maximum flow value, thus not being advisable for maximum flow use.

ÍNDICE

1.	INTROD	DUCCIÓN	1
2.	OBJETI	VOS	2
3.	REVISIO	ÓN BIBLIOGRÁFICA	3
	3.1 Varial	bles Hidrológicas	3
	3.1.1	Precipitaciones	3
	3.1.2	Caudales	4
	3.2 Tratai	miento Probabilístico de la Información Hidrológica	5
	3.3 Deter	minación de la Probabilidad	6
	3.4 Anális	sis de Frecuencia	7
	3.5 Func	iones de Distribución de Probabilidad	8
	3.5.1	Distribución Normal	8
	3.5.2	Distribución Logarítmico- Normal	10
	3.5.3	Distribución Pearson Tipo III	12
	3.5.4	Distribución Gumbel	15
	3.5.5	Distribución Goodrich	16

5.	METOD	OLOGÍA	2
	 5.1 Marco General 5.2 Fases Metodológicas 5.2.1 Revisión Bibliográfica 5.2.2 Recopilación de la Información Estadística 5.2.3 Tratamiento Inicial de la Información 5.2.4 Parámetros Estadísticos 5.2.5 Determinación de Parámetros de las Funciones 5.2.6 Medidas de Bondad de Ajuste 5.2.7 Determinación del Mejor Ajuste 5.2.8 Análisis y Discusión de los Resultados 5.2.9 Conclusiones y Recomendaciones 	2	
	5.2 Fases	Metodológicas	2:
	5.2.1	Revisión Bibliográfica	22
	5.2.2	Recopilación de la Información Estadística	22
	5.2.3	Tratamiento Inicial de la Información	2
	5.2.4	Parámetros Estadísticos	2
	5.2.5	Determinación de Parámetros de las Funciones	2
	5.2.6	Medidas de Bondad de Ajuste	3
	5.2.7	Determinación del Mejor Ajuste	3
	5.2.8	Análisis y Discusión de los Resultados	3
	5.2.9	Conclusiones y Recomendaciones	3
	5.3 Mater	riales y Equipos	33
6.	PRESEN	ITACIÓN DE RESULTADOS	3
	6.1 Cauda	ales Máximos Instantáneos	3
	6.2 Estad	ígrafos de Posición y Dispersión de las Series	3
	6.3 Bonda	ad del Ajuste	3
	6.4 Proba	bilidad de Caudales Punta para Distintos Períodos de Retorno	5
7.	ANÁLIS	IS Y DISCUSIÓN DE RESULTADOS	6
	7.1 Repre	esentatividad de los datos	6
	7.2 Selecc	ción de la Información con la que se ha Trabajado	6

	7.3 La Alta Variabilidad de los Datos	69
	7.4 Datos Anómalos	71
	7.5 Relaciones entre los caudales máximos	72
	7.6 Comportamiento en el tiempo para caudales máximos	77
	7.7 Análisis comparatio de los resultados entre FDP	82
	7.8 Calidad de los ajutes	83
8.	CONCLUSIONES Y RECOMENDACIONES	85
	8.1 Conclusiones	85
	8.2 Recomendaciones	87
9.	BIBLIOGRAFÍA	88
	APÉNDICES	
	ANEXOS	

1. INTRODUCCIÓN

El caudal punta es el caudal máximo que se registra durante el aumento inusual del caudal de agua de un cauce natural o artificial, superando con creces los valores medios normales. La predicción de la magnitud de la creciente para el diseño de obras hidráulicas, ha sido siempre motivo de controversia debido a que los métodos que analizan caudales punta, deben realizar una proyección hacia el futuro, aplicando teoría de probabilidades, con un alto grado de incertidumbre. Las estaciones hidrométricas registran caudales mínimos, medios y máximos que fluyen por un punto determinado de una cuenca. Esta información hidrológica permite cuantificar la oferta hídrica de la cuenca y estimar los caudales máximos para distintos períodos de retorno, con el propósito de solucionar los problemas que implica el diseño de obras hidráulicas (Chow *et al.*, 1994).

Si se conocen con un nivel de aproximación razonable las magnitudes de las crecientes que se van a presentar durante la vida útil de una obra, es claro que las estructuras se pueden diseñar con una gran confianza en cuanto a los aspectos técnicos y económicos. En efecto, la estabilidad de una obra durante la vida útil de diseño, depende en gran parte de su capacidad para soportar los efectos que se producen sobre la estructura cuando pasan las crecientes extraordinarias. Estos efectos se traducen en impactos, presiones, socavación, taponamientos y desbordamientos. Para lograr la seguridad que reduzca el riesgo de falla de dichas obras, se debe construir un modelo probabilístico y con ello contar con una función de distribución de probabilidad representativa de la variable hidrológica de interés, indicando claramente su probabilidad de excedencia (Muñoz, 2004).

El propósito de esta investigación es expandir el conocimiento sobre las distribuciones de probabilidad que mejor pueden representar los caudales máximos de la región del Maule, para así facilitar su aplicación en actividades de ingeniería hidrológica e hidráulica.

2. OBJETIVOS

2.1 Objetivo General

Incrementar el conocimiento acerca del comportamiento de los caudales máximos instantáneos, por medio de funciones de distribución de probabilidad.

2.2 Objetivo Específico

Establecer las funciones de distribución de probabilidad, que mejor ajustan a los caudales punta de las distintas estaciones fluviométricas regionales.

3. REVISIÓN BIBLIOGRÁFICA

3.1 Variables Hidrológicas

Según Chow *et al.*, (1994), las precipitaciones y los caudales son variables hidrológicas que son medidas por las estaciones hidrométricas. Éstas son consideradas variables aleatorias y son definidas mediante una función que les asigna un valor, asociado a cada punto del espacio muestral.

3.1.1 Precipitaciones

Las precipitaciones representan el elemento más importante del ciclo hidrológico. Para Fernández (1995), la precipitación, junto con la temperatura, es el elemento climático más influyente en el medio natural, ya que afecta directamente en la distribución de las especies vegetales y animales, y a la vez en las actividades del hombre, como son las agrícolas, las forestales y las económicas entre otras.

Según Llamas, (1993), las precipitaciones son un fenómeno físico que describe la transferencia de agua en fase líquida (en forma de lluvia), y en fase sólida (en forma de nieve y granizo), entre la atmósfera y el suelo. Una parte de las precipitaciones alimenta la evaporación en la cuenca y el resto es aportación superficial o subterránea.

Las precipitaciones se pueden clasificar de tres tipos: orográficas, de convección y ciclónicas, dentro de las cuales las primeras son aquellas donde los vientos cargados de humedad llegan a una zona montañosa, y las masas de aire suben y se enfrían hasta alcanzar su punto de condensación. Por otra parte, las precipitaciones de tipo convectiva, son de corta duración, pero su intensidad es grande; en este tipo de precipitaciones el aire se calienta por radiación solar y se eleva, y durante su trayecto de ascensión se enfría hasta alcanzar su punto de condensación. Finalmente, las precipitaciones de tipo ciclónicas están asociadas al contacto

entre masas de aire de distinta humedad y temperatura, provocando precipitaciones prolongadas (Pizarro, 2002).

Desde un punto de vista hidrológico, Aparicio (1997) señala que en la superficie terrestre las precipitaciones son la fuente principal de agua, y la medición de éstas, son el punto de partida de la mayoría de los estudios relativos al uso del agua.

3.1.2 Caudales

Según Pizarro *et al.*, (1993), se denomina caudal o gasto, al volumen de agua que fluye a través de una sección transversal por unidad de tiempo, donde la unidad de medida más comúnmente empleada es m³/s. Para el ingeniero hidrólogo, el caudal es una variable dependiente en la mayoría de los estudios, puesto que la ingeniería hidrológica se dedica principalmente a estimar volúmenes de flujo, o los cambios en estos valores debido a la acción del hombre (Linsley *et al.*, 1988).

Para el cálculo de caudales existen diferentes metodologías, dependiendo del tipo de información que se disponga, la cual puede ser de tipo fluvial o pluvial; si se cuenta con datos fluviométricos, los caudales son calculados en forma directa a través de análisis de frecuencia de los gastos medidos, en cambio si se cuenta con información pluviométrica, la estimación de crecidas es estimada por medio de modelos basados en las características morfométricas de la cuenca en estudio (Pizarro *et al*, 1993).

Al considerar los caudales, son de gran importancia los que representan valores máximos. Linsley *et al.*, (1988) señalan que un caudal punta, es un caudal máximo registrado, el cual sobrepasa los valores normales. En un hidrograma de crecidas, es el valor más alto de la curva. El cálculo de este tipo de caudales es una de las máximas preocupaciones de la ingeniería hidrológica, con el fin de que esta información sea útil en el diseño de obras hidráulicas, además de permitir su cuantificación en volumen y poder así definir estrategias de gestión de los recursos hídricos, hecho que cada vez cobra mayor relevancia.

3.2 Tratamiento Probabilístico de la Información Hidrológica

Según Chow, et al., (1994), un conjunto de observaciones de x_1, x_2, \ldots, x_n de la variable aleatoria, se denomina muestra. Una muestra es sacada de una población hipotéticamente infinita, que posee propiedades estadísticas constantes. Las propiedades de una muestra pueden cambiar de una muestra a otra y el conjunto de todas las muestras posibles que pueden extraerse de una población, se conoce como espacio muestral, y un evento es un subconjunto muestral. Si las observaciones de una muestra están idénticamente distribuidas, éstas pueden ordenarse para formar un histograma de frecuencia. Ahora bien, si el número de observaciones n_i en el intervalo i que cubre un cierto rango, se divide por el número total de observaciones n_i el resultado se conoce como frecuencia relativa. Asimismo, la suma de los valores de la frecuencia relativa hasta un punto dado, es la función de frecuencia acumulada, y en su límite, cuando $n\rightarrow\infty$ y $\Delta\chi\rightarrow0$, se denomina función de distribución de probabilidad.

Desde el punto de vista de ajuste de la información de la muestra a una distribución teórica, las cuatro funciones (frecuencia relativa y frecuencia acumulada, para la muestra y para la población, distribución de probabilidad y densidad de probabilidad), pueden ordenarse en un ciclo, tal como se muestra en la figura N°1. Empezando por la parte superior izquierda, (a), la función de frecuencia relativa se calcula utilizando los datos de la muestra divididos en intervalos y acumulados para formar la función de frecuencia acumulada mostrada en la parte inferior izquierda, (b). La función de distribución de probabilidad en la parte inferior derecha, (c), es el límite teórico de la función de frecuencia acumulada a medida que el tamaño de la muestra se vuelve infinitamente grande y el intervalo de la información infinitamente pequeño. La función de densidad de probabilidad en la parte superior derecha, (d), es el valor de la pendiente de la función de distribución para un valor específico de x. El ciclo puede cerrarse, calculando un valor teórico de la función de frecuencia relativa, denominado la función de probabilidad incrementada (Chow *et al.*,1994).

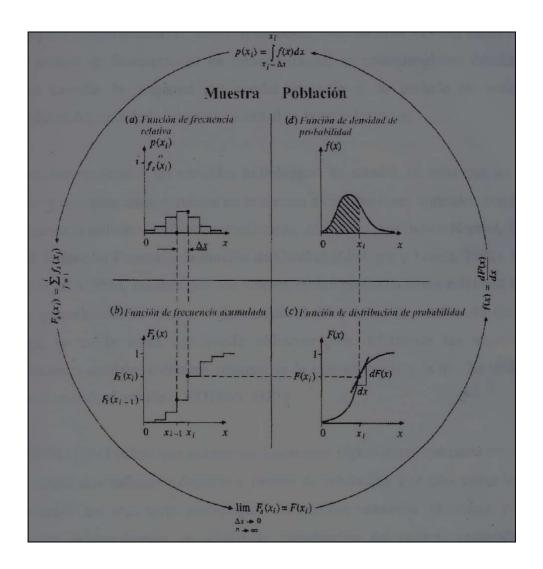


Figura N°1: Funciones de frecuencia de la muestra y funciones de probabilidad de la población (Fuente: Chow *et al.*,1994).

3.3 Determinación de la Probabilidad

El diseño y la planeación de obras hidráulicas, están siempre relacionados con eventos hidrológicos futuros, cuyo tiempo de ocurrencia no puede predecirse; es por eso que se debe recurrir al estudio de la probabilidad o frecuencia (Linsley *et al.*, 1988).

Según Pizarro y Novoa (1986), la definición de la probabilidad implica consignar dos conceptos; uno de ellos es el periodo de retorno, el cual está definido, como el tiempo que transcurre entre dos sucesos iguales; sea ese tiempo, T. El segundo concepto es la probabilidad de excedencia, que es la probabilidad asociada al periodo de retorno, donde la variable aleatoria toma un valor igual o superior a cierto número X y se define como:

$$P(x) = \frac{1}{T}$$

La probabilidad de que un valor de la variable aleatoria no sea excedido, está dado por la función de distribución de probabilidad F(x), la cual se expresa de la siguiente manera:

$$F(x) = \int_{0}^{x} f(x)dx = P(x \le X) = 1 - \frac{1}{T}$$

Luego la probabilidad de que la variable aleatoria sea mayor que X, se expresa como:

$$P(x > X) = 1 - F(x) = \frac{1}{T}$$

3.4 Análisis de Frecuencia

El análisis de frecuencia es una herramienta utilizada para predecir el comportamiento futuro de los caudales en un sitio de interés, a partir de la información histórica de caudales. Es un método basado en procedimientos estadísticos, que permite calcular la magnitud del caudal asociado a un período de retorno. Su confiabilidad depende de la longitud y calidad de la serie histórica, además de la incertidumbre propia de la distribución de probabilidades seleccionada. Cuando se pretende realizar extrapolaciones a períodos de retorno mayores que la longitud de la serie disponible, el error relativo asociado a la distribución de probabilidades utilizada es más importante, mientras que en interpolaciones, la incertidumbre está asociada

principalmente a la calidad de los datos a modelar; en ambos casos la incertidumbre es alta dependiendo de la cantidad de datos disponibles (Ashkar, *et al.* 1993).

El análisis de frecuencia consiste en determinar los parámetros de las distribuciones de probabilidad y determinar con el factor de frecuencia la magnitud del evento para un período de retorno dado. Para determinar la magnitud de eventos extremos, cuando la distribución de probabilidades no es una función fácilmente invertible, se requiere conocer la variación de la variable respecto a la media.

3.5 Funciones de Distribución de Probabilidad

El comportamiento de las variables aleatorias discretas o continuas se describe con la ayuda de Distribuciones de Probabilidad. La variable se designa por mayúscula y un valor específico de ella por minúscula.

3.5.1 Distribución Normal

La función Normal es el modelo más utilizado y con mayor importancia en el campo de la estadística (Varas y Bois, 1998). Sin embargo, su uso es muy limitado en hidrología, dado que las variables raramente se comportan de esta forma.

Linsley *et al.*, (1988) señalan que el uso de esta función, en términos hidrológicos, debe reducirse a zonas húmedas donde el valor medio es alto, no siendo recomendable para valores extremos.

Función de distribución de probabilidad normal:

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\Pi\sigma}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} dx$$

Donde:

x: Variable aleatoria.

μ: Media de la población.

σ: Desviación estándar de la población.

Para resolver esta función se recurren a métodos numéricos para evaluarla, y para hacer esto más sencillo se le ha asignado una variable estandarizada, cuya expresión es la siguiente:

$$z = \frac{x - \mu}{\sigma}$$

La cual está normalmente distribuida con media cero y desviación estándar unitaria. Así, la función principal queda como:

$$F(x) = F(z) = \int_{-\infty}^{z} \frac{1}{2\Pi} e^{-z^{2}/2} dz$$

La función Normal presenta la siguiente tendencia:

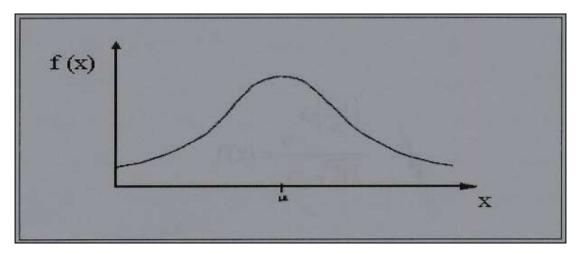


Figura N°2: Distribución Normal

3.5.2 Distribución Logarítmico-Normal

Las variables físicas de interés en Hidrología (precipitación, caudal, evaporación y otras) son generalmente positivas, por lo cual es usual que presenten distribuciones asimétricas. Así, se ha propuesto aplicar una transformación logarítmica (Varas y Bois, 1998), donde Y = Ln X, está normalmente distribuida; luego X está distribuida en forma Normal, y su función de densidad de probabilidad es

$$f(x) = \frac{1}{\sqrt{2\Pi}} \frac{1}{x\beta} e^{-\frac{1}{2} \left(\frac{\ln x - \alpha}{\beta}\right)^2}$$

Donde los parámetros de la función son α y β , que son la media y la desviación estándar de los logaritmos de la variable aleatoria, y están definidos como sigue:

$$\alpha = \sum_{i=1}^{n} \frac{\ln x_i}{n}$$

$$\beta = \left[\sum_{i=1}^{n} \frac{(\ln x_i - \alpha)^2}{n}\right]^{1/2}$$

Luego la función de distribución de probabilidad es:

$$F(x) = \int_{0}^{x} \frac{1}{2\Pi} \frac{1}{x\beta} e^{-\frac{1}{2} \left(\frac{\ln x - \alpha}{\beta}\right)^{2}} dx ,$$

donde e corresponde a la constante de Neper.

Al igual que en la distribución normal, se le asigna a "z" los siguientes valores:

$$z = \frac{\ln x - \alpha}{\beta}$$

La función de distribución de probabilidad entonces, sigue la siguiente tendencia:

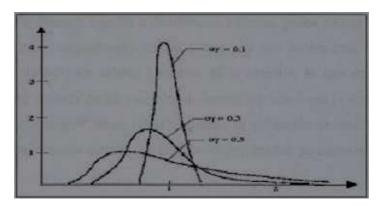


Figura N°3: Función de distribución Log-Normal

Estudios realizados por Poblete *et al.*, (2002), identifican a la función Log-Normal, entre otras funciones, como la que presenta mejor bondad de ajuste a series de caudales anuales, por sobre un 90% para el test de Kolmogorov-Smirnov y ji cuadrado.

3.5.3 Distribución Pearson Tipo III

Chow *et al.*, (1994), señalan que esta distribución posee una gran flexibilidad y diversidad de forma, dependiendo de los valores de sus parámetros, asimilando su utilización para precipitaciones o caudales máximos anuales. La función de densidad de probabilidad Pearson III se define como:

$$f(x) = \frac{1}{\alpha \Gamma(\beta)} \left\{ \frac{x - \delta}{\alpha} \right\}^{\beta - 1} e^{-\frac{x - \delta}{\alpha}}$$

Donde α , β , δ son los parámetros de la función y $\Gamma(\beta)$ es la función de Gamma. Los parámetros α , β , δ se evalúan a partir de n datos medidos. Asimismo los parámetros de la distribución pueden ser estimados en función del promedio (\bar{x}) y de la desviación estándar (S) de la muestra, por medio de las siguientes expresiones:

$$\alpha = \frac{S}{\sqrt{\beta}}$$
 ; $\beta = \left(\frac{2}{\gamma}\right)^2$; $\delta = \bar{x} - \alpha\beta$

Donde:

 γ : Coeficiente de sesgo

e: Constante de Neper

El coeficiente de sesgo, se define como,

$$\gamma = \sum_{i=1}^{n} \frac{(x_i - \bar{x})^3 / n}{S^3}$$

La función de distribución de este modelo es:

$$F(x) = \frac{1}{\alpha \Gamma(\beta)} \int_{0}^{x} e^{-\left(\frac{x-\delta}{\delta}\right)} \left(\frac{x-\delta}{\delta}\right) dx$$

Entonces, sustituyendo se alcanza la siguiente expresión:

$$y = \frac{x - \delta_1}{\alpha_1}$$

Finalmente la ecuación queda como:

$$F(y) = \frac{1}{\Gamma(\beta_1)} \int_{0}^{y} y^{\beta - 1} e^{-y} dy$$

Siendo la anterior una función ji cuadrada con $2\beta_1$ grados de libertad y $\chi^2 = 2y$:

$$F(y) = F(\chi^2 | v) = F_{x^2}(2y|2\beta_1)$$

Los resultados del estudio realizados por Kroll y Vogel 2002, en 1.505 estaciones en los Estados Unidos, determinan que la función de Pearson Tipo III, es la que mejor representa a las series de caudales mínimos intermitentes, donde se presentan descargas con valores cero. Asimismo, las series de caudales mínimos permanentes se ven reflejadas en la función Log-Normal de tres parámetros.

Para ajustar distribuciones de tres parámetros, se necesita estimar el coeficiente de asimetría de la distribución; para ello es necesario disponer de una serie con longitud de registros larga, mayor de 50 años, (Kite, 1988).

Las distribuciones con dos parámetros, son usualmente preferidas cuando se dispone de pocos datos, ya que reducen la varianza de la muestra, (Ashkar *et al*, 1993).

3.5.4 Distribución Gumbel

Según Aparicio, 1997, si se tienen N muestras, cada una de las cuales contienen n eventos y si se selecciona el máximo de x de los n eventos de cada muestra, es posible demostrar que, a medida que n aumenta, la función de distribución de probabilidad de x tiende a:

$$F(x) = e^{-e^{-d(x-\mu)}} \qquad \text{Para } -\infty \le \chi \le \infty$$

Donde:

χ: Representa el valor a asumir por la variable aleatoria

e: Constante de Neper.

Los parámetros de la distribución de una muestra de tamaño infinito, tienden a los siguientes valores, en base a la media aritmética y la desviación estándar de la muestra:

$$d = \frac{1}{0,779696 * S} \qquad ; \qquad \mu = \bar{x} - 0,450047 * S$$

Entonces, la función de Gumbel sigue la siguiente tendencia:

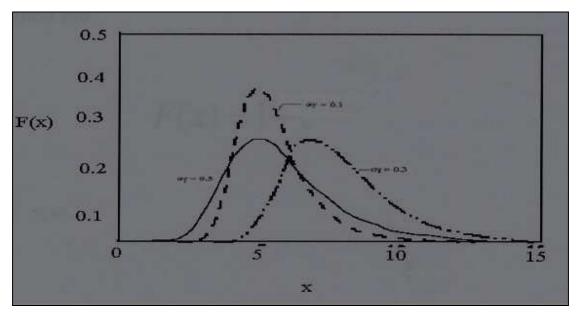


FIGURA N°4: Distribución de Gumbel

3.5.5 Distribución Goodrich

Según Pizarro, R. *et al.*, (1993), la función de Goodrich elimina los valores extremos, en que la probabilidad de ocurrencia es muy pequeña. Por lo mismo, consigue suprimir las distorsiones que puede provocar un solo valor anómalo. Así, la función de distribución de Goodrich queda definida por:

$$F(X) = 1 - e^{-a(x - x_1)^{1/p}}$$
 Para $X_1 < X \le \infty$

Donde los parámetros se determinan a partir del siguiente sistema de ecuaciones:

$$\frac{m^3}{s^3} = P(p) \quad ; \quad a^{2p} = \frac{1}{s^2} \left[\Gamma(2p+1) - \Gamma^2(p+1) \right] \quad ; \quad X_1 = \overline{x} - \frac{\Gamma(p+1)}{a^p}$$

Donde:

m₃: Momento central de orden tres.

S³: Desviación típica al cubo.

P(p): Función auxiliar de Goodrich.

S²: Varianza muestral.

Γ : Función Gamma.

 \bar{x} : Media muestral.

e : Constante de Neper

Muñoz (2004) identificó a la función de Goodrich como la que presenta mejor bondad de ajuste a series anuales de precipitación y caudal, independiente si la cuenca pertenece a una cuenca de tipo pluvial o pluvio-nival; sin embargo, en el mismo estudio se determinó, para el caso de precipitaciones mensuales en cuencas pluviales, que éstas son mejor representadas por la función de Gumbel.

4. ANTECEDENTES GENERALES

La Región del Maule se extiende entre los 34° 41′ y 36° 33′ de latitud Sur y desde los 70° 20′ de longitud Oeste hasta el Océano Pacífico. La superficie, calculada por el Instituto Geográfico Militar, es de 30.296,1 km², equivalente al 4 % del territorio nacional, excluido el Territorio Antártico Chileno. Su organización político-administrativa considera las siguientes 4 provincias: Curicó, Talca, Linares y Cauquenes.

La población censada en el año 2002, registró un total de 908.097 habitantes y corresponde al 6 % del total nacional. El 66 % de la población, 603.020 habitantes, reside en área urbana y el 34 %, 305.077 habitantes, en el área rural, presentando la región él más alto porcentaje de población rural del país (INE, 2007).

Destacan de mar a cordillera, las siguientes geoformas: Planicies litorales, que son una estructura de relieve ubicadas en sentido oeste-este, y de norte a sur desde el límite norte del país hasta el Canal de Chacao; Cordillera de la Costa, que es un alineamiento montañoso que se extiende de Norte a Sur y con alturas que apenas alcanzan los 800 m.s.n.m.; Depresión Intermedia, la que se presenta en forma de cono, ampliándose hacia el Sur, y en donde su aspecto es el de planicie suavemente ondulada, bajo condiciones de clima y suelo que han favorecido la ocupación poblacional; la precordillera, con su territorio de difícil penetración por sus laderas abruptas y ríos encajonados, conocido también como la montaña, y la Cordillera de los Andes, cuya altura es considerablemente menor respecto de las regiones más septentrionales.

La economía regional presenta una especialización en las actividades silvoagropecuarias, las cuales han venido evolucionando positivamente en los últimos años, incrementando la producción de madera, sus derivados y las frutas de exportación. La zona destaca por su producción de arroz, remolacha y porotos.

El clima se considera templado de tipo mediterráneo con temperatura media de 19 °C y con extremos que superan los 30 °C durante el periodo de verano; en invierno las temperaturas mínimas medias son de 7 °C (DMC, 2007).

Según el balance hídrico, desarrollado en 1987 por la Dirección General de Aguas, en la VII Región del Maule se presenta al año un promedio de 1.377 mm de precipitaciones y 784 mm promedio de escorrentía. La evaporación real, en superficie natural alcanza los 548 mm.

En esta región se presentan dos grandes cuencas hidrográficas exorreicas; la del río Mataquito y la del río Maule, ambas originadas en la Cordillera de los Andes.

La cuenca del río Mataquito tiene una superficie aproximada de 6.200 Km². Este curso de agua se origina 12 Km al oeste de Curicó, a partir de la confluencia de sus tributarios principales, los ríos Teno y Lontué. Tras un recorrido de unos 95 Km y sin ningún afluente, el río Mataquito desemboca al océano Pacífico en las proximidades de Iloca, a 100 Km al oeste de Curicó (CONAMA, 2007).

El río Teno se origina en la Cordillera de los Andes, de la confluencia de los ríos Malo y Nacimiento. El primero drena las lagunas de Teno, junto al volcán Planchón, y el segundo, más pequeño, viene desde el norte. El río Lontué tiene una cuenca mayor que la del Teno y proviene de más al sur. Se forma por la confluencia del río Los Patos y del Colorado. Sólo recibe pequeños tributarios, entre los que cabe mencionar los esteros Upeo y Potrero Grande (CONAMA, 2007).

Por otra parte, la cuenca del río Maule tiene una superficie bastante más grande que la del Mataquito, ya que cubre alrededor de 20.600 Km². El curso principal es el propio río Maule, que nace en la laguna del Maule, a 2.200 m.s.n.m.

En el sector alto, el principal afluente del Maule es el río Melado, que nace de la laguna Dial. Otros afluentes de importancia en la parte alta son los ríos Colorado, Claro, Puelche y Cipreses (CONAF-CONAMA VII Región, 1999).

Antes de llegar al llano, el Maule está represado en el embalse Colbún, que alimenta la Central Hidroeléctrica del mismo nombre. Tras recorrer casi 250 Km, el Maule desemboca en el océano Pacífico justo al norte de la ciudad de Constitución.

En esta zona la flora y la fauna es rica y diversa, producto de la topografía, el clima y las distintas asociaciones vegetacionales. Asimismo y en lo que respecta a la distribución de la flora en las formaciones vegetales, se destaca el Bosque Caducifolio de la montaña como la formación vegetal con la mayor diversidad florística, con 427 especies. El Bosque Caducifolio Maulino presenta 347 especies. La Estepa Altoandina del Maule cuenta con 113 especies. En tanto, las restantes formaciones vegetales regionales presentan un número mucho menor de especies. Las especies más características del bosque son roble, coihue, avellano, arrayán, laurel, palmilla, maitén, litre, peumo, boldo, quillay y llantén, entre otras. Aunque escasas, existen tres especies endémicas de Chile que están en peligro de extinción: el ruíl, el queule y el pitao (CONAMA, 2007).

En lo referente a la fauna, del total de 277 especies nativas de la región, 83 están mencionadas en el Libro Rojo de Fauna Terrestre de Chile (CONAF, 1993); de ellas 81 están en alguna categoría de amenaza y dos especies (un ave y un mamífero) están fuera de peligro. Lo anterior implica que un 29% de especies están amenazadas. La fauna predomina en los bosques precordilleranos y cordilleranos, donde se aprecian mamíferos como el monito del monte, el colilargo de los espinos, la rata topo cordillerana, la vizcacha, el tucotuco maulino, el murciélago orejudo, el zorro culpeo y el puma.

En lo que respecta a las Áreas Silvestres Protegidas (SNASPE), la Región del Maule presenta siete áreas silvestres protegidas con la categoría de reservas nacionales, las que comprenden 187,2 km2 de extensión. Considerando que la superficie total de la región es de 30.518 km2, se observa que sólo un 0,6% de la zona está bajo protección.

5. METODOLOGÍA

5.1 Marco General

El presente estudio se basa en el análisis comparativo de cuatro modelos probabilísticos correspondientes a las funciones de distribución de probabilidad de Gumbel, Goodrich, Log-Normal y Pearson tipo III. La comparación de estos modelos probabilísticos, pretende encontrar cuál de estas funciones de distribución de probabilidad se ajusta de mejor forma a los caudales punta que presentan las distintas estaciones fluviométricas de la Región del Maule.

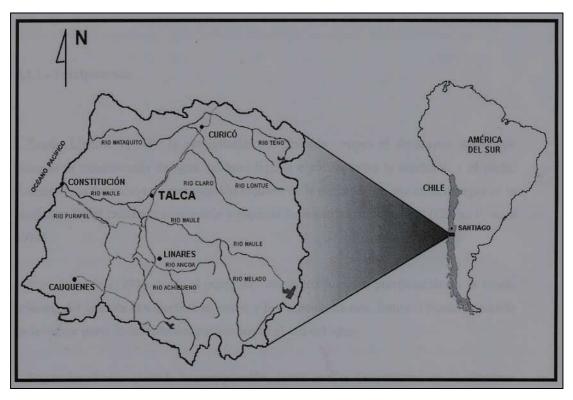


Figura N°5: Región del Maule, zona de estudio.

5.2 Fases Metodológicas

5.2.1 Revisión bibliográfica

En esta primera etapa, se llevó a cabo una extensa revisión de los aspectos más relevantes para la elaboración del estudio y temas relativos a los modelos probabilísticos de interés hidrológico. Conjuntamente se recopiló información sobre la variable de interés, como es el caudal punta, y sus eventuales tratamientos probabilísticos.

5.2.2 Recopilación de la Información Estadística

La información requerida para realizar la investigación, se obtuvo de 28 estaciones hidrométricas, de la Región del Maule, pertenecientes a la Dirección General de Aguas (D.G.A).

La información requerida es de tipo fluviométrico, correspondiente a series de tiempo de aproximadamente 40 años, lo cual es aceptable para entregar una validez estadísticamente confiable, sin embargo, no todas las estaciones presentan datos de 40 años atrás, debido a la falta de instrumental disponible en los distintos puntos de control operativos en la región, los cuales se han ido implementando con los años.

Los conjuntos de series de datos de caudales, son los siguientes:

Tabla $N^{\circ}1$: Estaciones fluviométricas de la Región del Maule

Estaciones	Ubicación		Davida
Estaciones	Lat. S	Long.W	Periodo
Río Achibueno en la Recova	36°00′	71°26′	1987-2006
Río Ancoa en el Morro	35°54′	71°17′	1960-2006
Río Loncomilla en las Brisas	35°37′	71°46	1983-2005
Río Claro en Camarico	35°10′	71°23	1963-2006
Río Cauquenes en Desembocadura	35°54′	72°03	1986-2006
Río Colorado en Junta con Palos	35°16′	71°00	1975-2006
Río Claro en los Queñes	34°59′	70°48	1986-2006
Río Maule en Armerillo	35°42′	71°06	1960-1978
Rio Maule en Armermo	33 42		2001-2006
Río Cauquenes en el Arrayán	36°01′	72°23	1987-2006
Río Loncomilla en Bodega	35°49′	71°50	1985-2006
Río Longaví en el Castillo	36°15′	71°20	1964-2006
Río Maule en Forel	35°24′	72°12	1988-2006
Río Mataquito en Licantén	34°59′	72°00	1987-2006
Río Loanco en Desembocadura*	35°34′	72°35	1987-2006
Río Maule en Longitudinal	35°33′	71°42	1962-2005
Río Melado en El Salto	35°53′	71°01	2003-2006
Río Purapel en Nirivilo	35°33′	72°06	1960-2006
Río Perquilauquén en Ñiquen	36°14′	72°00	1987-2006
Río Palos en Junta con Colorado	35°16′	71°00	1967-2006
Río Putagán en Yerbas Buenas	35°46′	71°35	1987-2006
Río Perquilauquén en Quella	36°03′	72°05	1963-2005
Río Longaví en Quiriquína	36°13′	71°29	1960-2006

Continuación Tabla N°1

Estaciones	Ubicación		Periodo
Estaciones	Lat. S	Long.W	1 011000
Río Lircay en Puente Las Rastras	35°29′	71°17	1961-2006
Río Claro en Rauquén	35°27′	71°47	1999-2006
Río Perquilauquén en San Manuel	36°22′	70°38	1960-2006
Río Teno después de Junta con Claro	34°59′	70°49	1960-2006
Río Teno Bajo Quebrada Infiernillo	35°02′	70°38	1985-2006
Río Purapel en Sauzal	35°45′	72°04	1999-2005

^{*}Estación perteneciente a las cuencas costeras del Maule, en el límite de la Región, entre la Quebrada Honda y río Reloca.

5.2.3 Tratamiento Inicial de la Información

Para una serie de datos estadísticos, es indispensable resumir una multitud de cifras en datos sintéticos; en base a lo anterior y para una mayor comprensión, para cada serie de datos se determinaron los estadígrafos de posición y de dispersión.

5.2.4 Parámetros Estadísticos

En esta etapa se calcularon para cada serie de datos los estadísticos principales, a saber, promedio y desviación estándar. Los estadísticos extraen información de una muestra, señalando las características de la población. Los principales estadísticos son los momentos de primer y segundo orden correspondiente a la media y la varianza, respectivamente.

• **Media:** Muestra la tendencia central de la distribución. Es considerado el primer momento respecto al origen.

$$\mu = \int_{-\infty}^{\infty} x f(x) dx$$

El valor estimado de la media a partir de la muestra es:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} Xi$$

• **Desviación Estándar:** La desviación estándar, es una medida de la variabilidad, ya que es la raíz cuadrada y su valor estimado se denota por:

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Mientras mayor sea el valor de la desviación estándar, mayor es la dispersión de los datos (ver figura $N^{\circ}6$).

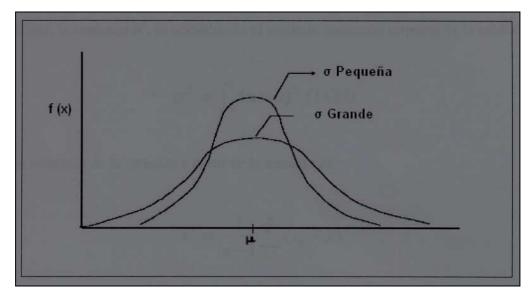


Figura N°6: Distribución de probabilidades con diferentes desviaciones estándar.

A su vez, la varianza, es considerada el segundo momento respecto de la media

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

El valor estimado de la varianza a partir de la muestra es:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

5.2.5 Determinación de Parámetros de las Funciones

Una vez finalizado el análisis estadístico de las series de caudales punta, se realizó un ajuste de los caudales a distintas funciones de distribución de probabilidad, las cuales son usadas en hidrología para predecir con cierta probabilidad los valores que puede tomar una variable hidrológica.

(a) Función de Distribución Logarítmico -Normal

El primer paso a realizar es la aplicación de una transformación logarítmica a los datos de las series de caudales punta. Una vez realizada esta transformación se procedió a calcular los parámetros requeridos por esta función, los cuales son:

$$\alpha = \sum_{i=1}^{n} \frac{\ln x_i}{n}$$

$$\beta = \left[\sum_{i=1}^{n} \frac{(\ln x_i - \alpha)^2}{n} \right]^{1/2}$$

Ambos parámetros representan a la media aritmética y la desviación estándar de los logaritmos de la variable aleatoria. Finalmente se procedió a ajustar dicha función.

$$F(x) = \int_0^x \frac{1}{2\Pi} \frac{1}{x\beta} e^{-\frac{1}{2} \left(\frac{\ln x - \alpha}{\beta}\right)^2} dx$$

(b) Función de Distribución Pearson Tipo III

En primer lugar se calcularon los parámetros α , β , y δ por medio de las siguientes expresiones:

$$\alpha = \frac{S}{\sqrt{\beta}}$$
 ; $\beta = \left(\frac{2}{\gamma}\right)^2$; $\delta = \bar{x} - \alpha\beta$

Luego se procedió a calcular el coeficiente de sesgo, sustituyendo los valores calculados anteriormente, a través de la función que lo define.

$$\gamma = \sum_{i=1}^{n} \frac{(x_i - \bar{x})^3 / n}{S^3}$$

Finalmente se realizó el ajuste de la función por medio de interpolaciones en la tabla de distribución Chi-cuadrado de Pearson, con $2\beta_1$ grados de libertad y $x^2=2\gamma$. Así,

$$F(x) = \frac{1}{\alpha \Gamma(\beta)} \int_{0}^{x} e^{-\left(\frac{x-\delta}{\delta}\right)} \left(\frac{x-\delta}{\delta}\right) dx$$

Donde:

X : Valor a asumir por la variable aleatoria.

 α,β,δ : Parámetros.

e : Constante de Neper.

A partir de dicha expresión fue posible calcular el valor de x, el cual quedó definido como:

$$x = y\alpha + \delta$$

(c) Función de Distribución de Gumbel:

Para la determinación de los parámetros requeridos por el modelo, se utilizaron las siguientes expresiones que los definen:

$$d = \frac{1}{0,779696 * S} \qquad ; \qquad \mu = \bar{x} - 0,450047 * S$$

$$F(x) = e^{-e^{-d(x-\mu)}}$$

Donde:

X : Valor a asumir por la variable aleatoria.

μ, d: Parámetros.

e : Constante de Neper.

Y luego despejando en la función de distribución, se obtuvo el valor de x:

$$x = \mu - \frac{\ln(-\ln(F(x)))}{d}$$

(c) Función de Distribución de Goodrich:

Previo al ajuste de la función, fue necesario calcular los siguientes parámetros, mediante los siguientes sistemas de ecuaciones:

$$\frac{m^3}{s^3} = P(p) \quad ; \quad a^{2p} = \frac{1}{s^2} \Big[\Gamma(2p+1) - \Gamma^2(p+1) \Big] \quad ; \quad X_1 = \frac{1}{s} - \frac{\Gamma(p+1)}{a^p} \quad ,$$

considerando que $x \ge X_1$, para que la función matemática posea sentido, toda vez que el mínimo de ésta, se encuentra cuando $x = X_1$

$$F(X) = 1 - e^{-a(x-x1)^{1/p}}$$

Donde:

X : Valor a asumir por la variable aleatoria.

 X_1,a,p : Parámetros.

e : Constante de Neper.

Finalmente y despejando x de la función de distribución de Goodrich, queda:

$$x = x_1 + \frac{1}{a^p} \left[-\ln\left(1 - F(x)\right) \right]^p$$

5.2.6 Determinación de la probabilidad de excedencia

Los años asignados para los periodos de retorno fueron 10, 20, 30, 40, 50 y 100 años; con esta información se procedió a la confección de una tabla asociada a estos periodos de retorno, para cada una de las Funciones de Distribución de probabilidad y para las distintas estaciones en estudio. Posteriormente se estimó la probabilidad de excedencia, donde la variable aleatoria toma un valor igual o superior a cierto número X y se define como:

$$P(x) = \frac{1}{T}$$

5.2.7 Determinación del Mejor Ajuste

Se entiende por bondad de ajuste, a la asimilación de datos observados de una variable, a una función matemática previamente establecida y reconocida. A través de ésta es posible predecir el comportamiento de la variable en estudio (Pizarro, 1986).

Para determinar la calidad del ajuste, se realizó una contrastación para cada dato que se obtenga en la frecuencia acumulada y en la frecuencia teórica acumulada; para ello se utilizarán métodos cuantitativos, como el coeficiente de determinación R² y el test de Kolmogorov-Smirnov.

• Coeficiente de Determinación R²

Este coeficiente indica qué proporción de la variación total de la frecuencia observada, es explicada por la frecuencia teórica acumulada. Se encuentra definido por la siguiente expresión (Pizarro, 1986).

$$R^{2} = 1 - \frac{\sum_{i} (F_{n}(x)_{i} - F(x)_{i})^{2}}{\sum_{i} (F_{n}(x)_{i} - \overline{F_{n}(x)_{i}})^{2}}$$

Donde:

 R^2 : Coeficiente de determinación; $0 \le R^2 \le 1$.

 $\overline{F_n(x)_i}$: Media de las frecuencias observadas acumuladas.

 $F_n(x)_i$: Frecuencia observada.

Cuando $R^2 \ge 0.9$ se aceptará el ajuste considerándolo como bueno (Ashkar *et al.*, 1993).

Test de Kolmogorov-Smirnov

Este procedimiento es un test no paramétrico que permite probar si dos muestras provienen del mismo modelo probabilístico (Varas y Bois, 1998). Así mismo Pizarro (1988), hace referencia a que es necesario determinar la frecuencia observada acumulada y la frecuencia teórica acumulada; una vez determinadas ambas frecuencias, se obtiene el supremo de las diferencias entre ambas.

Este test es válido para distribuciones continuas y sirve tanto para muestras grandes como para muestras pequeñas (Pizarro *et al*, 1986).

Para la aplicación de este test, se necesita en primer lugar determinar la frecuencia observada acumulada.

$$Fn\left(x\right) = \frac{n}{N+1}$$

Donde:

Fn (x): Frecuencia observada acumulada.

n : N° de orden del dato.

N : N° total de datos.

Luego se debe calcular la frecuencia teórica acumulada F(X), determinada para cada una de las funciones. Una vez obtenidas ambas frecuencias, se procede a calcular el valor supremo de las diferencias entre ambas, en la i-ésima posición de orden, que se denomina Dc.

$$Dc = Sup \left| F_n(x)_i - F(x)_i \right|$$

Si la diferencia suprema es menor que la diferencia tabulada por tabla, definida en base al tamaño de la muestra, se está en presencia de un buen ajuste con el nivel de confianza asumido. Si esta comparación revela una diferencia suficientemente grande entre las funciones de distribución muestral y la distribución propuesta, entonces se rechaza (Canavos, 1988).

5.2.8 Análisis y Discusión de los Resultados

El análisis se desarrolló en base a los estadígrafos de dispersión y magnitud de cada serie, y también en función de los resultados que arrojó el test de bondad de ajuste Kolmogorov-Smirnov y el coeficiente de determinación R²; así se pudo determinar los mejores ajustes.

5.2.9 Conclusiones y Recomendaciones

A partir de los resultados y del análisis de los mismos, se generaron conclusiones de acuerdo a los objetivos planteados inicialmente. Finalmente se indicaron algunas recomendaciones que se estimaron convenientes, para el desarrollo de futuros estudios relacionados con el tema.

5.3 Materiales y Equipos

Para la realización del presente estudio, se requirieron los siguientes materiales y equipos:

- Base de datos, con información de Caudales máximos anuales instantáneos, de 28 estaciones de la región del Maule, pertenecientes a la Dirección General de Aguas de Talca.
- Cartografía de la zona, Región del Maule, del Instituto Geográfico Militar (I.G.M); Escala 1:50.000.
- Equipos computacionales (PC, impresora, scanner).
- Programas computacionales, para la manipulación y elaboración de la información requerida y el posterior desarrollo escrito del estudio, tales como Statgraphics Centurion, Microsoft office Excel 2007 y Microsoft office Word 2007.

6. PRESENTACIÓN DE RESULTADOS

En este capitulo se presentan los principales resultados obtenidos de la investigación realizada.

6.1 Caudales Máximos Instantáneos

 $\label{eq:lasticity} La \ tabla \ N^{\circ}2 \ presenta \ las \ distintas \ estaciones \ y \ las \ caracter\'isticas \ de \ los \ caudales \ punta \ registrados.$

Tabla N°2: Estaciones de la región del Maule

Estaciones	Cuenca	Q p _(max)	Año	$Q\;p_{(min)}$	Año	N° de datos
Río Achibueno en la Recova	Maule	2.621,2	1991	293,5	1998	20
Río Ancoa en el Morro	Maule	1.080,9	2000	99,2	1968	47
Río Loncomilla en Las Brisas	Maule	7.623,4	2000	570,4	1998	23
Río Claro en Camarico	Maule	1.723,8	1986	56	1998	42
Río Cauquenes en Desembocadura	Maule	922,4	2002	13,8	1998	21
Río Colorado en Junta con Palos	Mataquito	689,6	2000	106,7	1990	32
Río Claro en los Queñes	Mataquito	527,9	1986	68,7	1998	21
Río Maule en Armerillo	Maule	2.305,2	2002	180,5	1968	23
Río Cauquenes en el Arrayán	Maule	1.032,1	2000	11,2	1998	20
Río Loncomilla en Bodega	Maule	4.227,8	2000	154,7	1998	22
Río Longaví en el Castillo	Maule	2.877,9	1991	31,7	1965	42
Río Maule en Forel	Maule	17.212,9	2000	223	1992	16
Río Mataquito en Licantén	Mataquito	4.638,3	1987	154,3	1996	20
Río Loanco en Desembocadura	Maule	854,9	1992	3,1	2006	20
Río Maule en Longitudinal	Maule	3.064	1972	187,2	1968	43
Río Melado en El Salto	Maule	972	2003	875,4	2006	8*
Río Purapel en Nirivilo	Maule	315,2	1992	1,9	1968	47
Río Perquilauquén en Ñiquen	Maule	1.378,6	2000	109,4	1998	20
Río Palos en Junta con Colorado	Mataquito	597,4	2000	27,5	1968	40
Río Putagán en Yerbas Buenas	Maule	824,6	1992	52,8	1998	20
Río Perquilauquén en Quella	Maule	2.319,6	1975	71	1968	43
Río Longaví en Quiriquína	Maule	2.534,9	1991	90,2	1968	47

Estaciones	Cuenca	Q p _(max)	Año	Q p _(min)	Año	N° de datos
Río Lircay en Puente Las Rastras	Maule	850	2000	2,2	1961	45
Río Claro en Rauquén	Maule	2.100,1	2001	690,8	2003	8
Río Perquilauquén en San Manuel	Maule	1.244,9	2000	92,5	1998	47
Río Teno después de Junta con Claro	Mataquito	1.155,8	2000	50,6	1998	47
Río Teno Bajo Quebrada Infiernillo	Mataquito	358,8	1991	29,5	1990	19
Río Purapel en Sauzal	Maule	321,2	2005	0,2	1999	7

 $Q p_{(ma)}$: Caudal punta máximo observado en la serie de datos por estación

*Estación con baja cantidad de datos, para la cual se seleccionaron dos datos por años, para aumentar su número de serie.

El caudal máximo observado en la cuenca del Río Maule, lo entrega la estación Maule en Forel, siendo este de 17.212,9 m³/s, la cual se ubica en Maule bajo a un altura de 20 m.s.n.m. En la cuenca del Río Mataquito, el caudal máximo registrado lo entrega la estación Río Mataquito en Licantén, con 4.638,3 m³/s, a una altura de 20 m.s.n.m.

6.2 Estadígrafos de posición y dispersión de las series, y parámetros de las funciones

A partir de la información facilitada, se determinaron los estadígrafos, con el propósito de resumir la información que puede entregar una serie. Para el caso de los estadígrafos de posición, se calculó la media aritmética o promedio, para formarse una idea del orden de magnitud de los caudales. Es así como además de interesar la posición de los valores, interesa también la dispersión o variación de dichos valores de la muestra, lo cual se puede determinar con estadígrafos como la varianza y la desviación estándar.

A continuación, en la tabla N°3, se presentan los valores de los parámetros de posición, dispersión y los parámetros que requiere cada función de distribución de probabilidad, para su posterior ajuste a los caudales máximos instantáneos, en todas las estaciones en estudio.

Q p_(mi): Caudal punta mínimo observado en la serie de datos por estación

Tabla N°3: Parámetros de las estaciones para cada modelo

Estaciones	\overline{X}	S	Parámetros por cada función estudiada										
Estaciones	Λ	3	Gun	nbel		og- rmal		Goodrich		Pe	Pearson Tipo II		
			μ	D	α	β	р	A	X_1	β	α	δ	
Río Achibueno en la Recova	1.094,6	605,9	821,9	0,002	6,8	0,6	0,49	4,01*E-07	-85,3	11,1	181,8	-924,9	
Río Ancoa en el Morro	299,6	180,9	223,8	0,007	5,6	0,5	0,89	0,002518	98,9	1,1	160,8	96,1	
Río Loncomilla en las Brisas	3.647,7	1.871,3	2.805,6	0,001	8,0	0,6	0,35	1,95*E-11	-1.266,3	86,8	200,9	-13.781	
Río Claro en Camarico	463,7	329,3	316,7	0,004	5,9	0,8	0,80	0,0005	55,3325	1,9	237,5	7,1	
Río Cauquenes en Desembocadura	379,3	288,3	249,5	0,004	5,5	1,0	0,46	6,4*E-07	-222,8	15	74,4	-737,9	
Río Colorado en Junta con Palos	342,5	161,0	270,0	0,008	5,7	0,5	0,40	3,27*E-07	-29,7	29,1	29,9	-525,8	
Río Claro en los Queñes	262,4	137,7	200,5	0,009	5,4	0,6	0,36	1,92*E-05	220,2	74,1	16	-923,5	
Río Maule en Armerillo	1.356,6	705,2	1.039,3	0,002	7,0	0,7	0,22	1,68*E-16	-1.455,1	120,7	64,2	-6.390	
Río Cauquenes en el Arrayán	421,8	302,4	285,7	0,004	5,7	1,1	0,45	4,31*E-07	-214,9	16,5	74,5	-804,9	
Río Loncomilla en Bodega	2.239,1	1.190,2	1.703,5	0,001	7,5	0,8	0,29	4,61*E-13	-1.457,1	1.790,4	28,1	-48.121	
Río Longaví en el Castillo	947,7	622,3	667,6	0,002	6,5	0,9	0,51	7,71*E-07	-223,8	9,2	205,1	-940,3	
Río Maule en Forel	5.238,2	5.709,7	2.668,5	0,000	7,8	1,4	0,61	2,94*E-07	-3.802,5	4,6	2.656,9	-7.032	
Río Mataquito en Licantén	1.792,9	1.248,0	1.231,3	0,001	7,2	0,9	0,56	7,96*E-07	-389,2	6,6	486,2	-1.410	
Río Loanco en Desembocadura	299,5	281,4	172,8	0,005	5,0	1,5	0,47	1,13*E-06	-271	12,9	78,6	-711,1	

	\overline{X}	S	Parámetros por cada función estudiada									
Estaciones	A		Gum	nbel		og- rmal		Goodrich		Pearson Tipo II		II
			μ	d	α	β	р	A	$\mathbf{X_1}$	β	α	δ
Río Maule en Longitudinal	1.377,9	768,6	1.032,0	0,002	7,0	0,7	0,35	3,17*E-10	-623,2	79,1	86,4	-5.459
Río Melado en El Salto	706,4	277,5	581,5	0,005	6,5	0,5	0,14	6,27*E-23	-881,2	14,9	9,5	793
Río Purapel en Nirivilo	105,5	71,2	73,4	0,018	4,3	1,1	0,44	7,08*E-06	-48,8	19,3	16,2	-206,8
Río Perquilauquén en Ñiquen	768,9	376,7	599,4	0,003	6,5	0,7	0,22	2,03*E-15	-733,3	111,3	35,7	-3.206
Río Palos en Junta con Colorado	247,9	142,0	184,0	0,009	5,3	0,7	0,38	1,62*E-07	-101,4	42,1	21,9	-673,5
Río Putagán en Yerbas Buenas	360,8	191,6	274,6	0,007	5,7	0,6	0,43	5,97*E-07	-58,4	20,6	42,3	-507,9
Río Perquilauquén en Quella	1.097,9	594,0	830,6	0,002	6,8	0,7	0,39	7,56*E-09	-309,5	34,2	101,5	-2.377
Río Longaví en Quiriquína	1.078,7	641,2	790,2	0,002	6,8	0,8	0,42	2,64*E-08	-337	22,5	135,2	-963
Río Lircay en Puente Las Rastras	302,5	187,1	218,3	0,007	5,4	1,1	0,52	1,07*E-05	-43,3	8,5	64,3	-242
Río Claro en Rauquén	1.482,5	488,9	1.262,4	0,003	7,2	0,4	0,19	1,07*E-18	-748,1	45,9	72,2	-1.831
Río Perquilauquén en San Manuel	616,7	264,9	497,5	0,005	6,3	0,6	0,28	3,18*E-11	-236,9	11.775,4	2,4	-28.133
Río Teno después de Junta con Claro	456,4	263,6	337,7	0,005	5,9	0,7	0,44	4,66*E-07	-105,1	17,7	62,7	-651,3
Río Teno Bajo Quebrada Infiernillo	172,7	84,3	134,8	0,015	5,0	0,6	0,36	2,07*E-07	-44,9	70,7	10	-536,6
Río Purapel en Sauzal	176,2	123,8	120,5	0,010	4,2	2,5	0,21	7,19*E-14	-347,2	82,3	13,7	-946,5

 $[\]overline{X}$: Promedio de cada estación; S: Desviación estándar de cada estación

6.3 Bondad del Ajuste

Para las distintas series de datos y funciones de distribución de probabilidad utilizadas, se calculó el test de Kolmogorov-Smirnov (K-S) y el coeficiente de determinación R². A continuación se presentan los resultados del ajuste de las series de caudales máximos instantáneos anuales, para las funciones de distribución de probabilidad utilizadas en este estudio. En las tablas siguientes se muestran los resultados de las pruebas usadas para determinar la calidad de los ajustes.

Tabla N°4: Ajuste de la función de Gumbel

Estadonos	Función de Gumbel			K-\$	S
Estaciones	Ajustada	\mathbb{R}^2	Dt	Dc	Resultado
Río Achibueno en la Recova	$F(x) = e^{-e^{-0.0021(x-821.9)}}$	0,98	0,294	0,131	ACEPTA Ho
Río Ancoa en el Morro	$F(x) = e^{-e^{-0.0073 (x-223.8)}}$	0,98	0,198	0,082	ACEPTA Ho
Río Loncomilla en las Brisas	$F(x) = e^{-e^{-0.0007(x-2.805,6)}}$	0,97	0,280	0,128	ACEPTA Ho
Río Claro en Camarico	$F(x) = e^{-e^{-0.0039(x-316.7)}}$	0,99	0,210	0,060	ACEPTA Ho
Río Cauquenes en Desembocadura	$F(x) = e^{-e^{-0.0044 (x-249.5)}}$	0,95	0,289	0,156	ACEPTA Ho
Río Colorado en Junta con Palos	$F(x) = e^{-e^{-0.008(x-270)}}$	0,98	0,236	0,105	ACEPTA Ho
Río Claro en los Queñes	$F(x) = e^{-e^{-0.0093(x-200.5)}}$	0,96	0,289	0,140	ACEPTA Ho
Río Maule en Armerillo	$F(x) = e^{-e^{-0.0018(x-1.039,3)}}$	0,93	0,270	0,209	ACEPTA Ho
Río Cauquenes en el Arrayán	$F(x) = e^{-e^{-0.0042(x-285.7)}}$	0,97	0,294	0,120	ACEPTA Ho
Río Loncomilla en Bodega	$F(x) = e^{-e^{-0.0011(x-1.703,5)}}$	0,98	0,284	0,110	ACEPTA Ho
Río Longaví en el Castillo	$F(x) = e^{-e^{0.0021(x-667.6)}}$	0,98	0,210	0,115	ACEPTA Ho

T. da. da. a.a.	Función de Gumbel		K-S				
Estaciones	Ajustada	\mathbb{R}^2	Dt	Dc	Resultado		
Río Maule en Forel	$F(x) = e^{-e^{-0.0002(x-2.668,5)}}$	0,93	0,328	0,161	ACEPTA Ho		
Río Mataquito en Licantén	$F(x) = e^{-e^{-0.0010(x-1.231,3)}}$	0,97	0,294	0,095	ACEPTA Ho		
Río Loanco en Desembocadura	$F(x) = e^{-e^{-0.0046(x-172.9)}}$	0,94	0,294	0,178	ACEPTA Ho		
Río Maule en Longitudinal	$F(x) = e^{-e^{-0.0017(x-1.032)}}$	0,95	0,207	0,149	ACEPTA Ho		
Río Melado en El Salto	$F(x) = e^{-e^{-0.0309(x-915.8)}}$	0,89	0,624	0,218	ACEPTA Ho		
Río Purapel en Nirivilo	$F(x) = e^{-e^{-0.018(x-73.4)}}$	0,96	0,198	0,145	ACEPTA Ho		
Río Perquilauquén en Ñiquen	$F(x) = e^{-e^{-0.0034 (x-599.4)}}$	0,95	0,294	0,178	ACEPTA Ho		
Río Palos en Junta con Colorado	$F(x) = e^{-e^{-183,9(x-0,009)}}$	0,97	0,215	0,122	ACEPTA Ho		
Río Putagán en Yerbas Buenas	$F(x) = e^{-e^{-0.0067(x-274.6)}}$	0,98	0,294	0,126	ACEPTA Ho		
Río Perquilauquén en Quella	$F(x) = e^{-e^{-0.0022 (x-830.6)}}$	0,98	0,207	0,140	ACEPTA Ho		
Río Longaví en Quiriquína	$F(x) = e^{-e^{-0.002(x-790.2)}}$	0,99	0,198	0,089	ACEPTA Ho		

Estaciones	Función de Gumbel		K-S			
Estaciones	Ajustada	\mathbb{R}^2	Dt	Dc	Resultado	
Río Lircay en Puente Las Rastras	$F(x) = e^{-e^{-0.0069(x-218.3)}}$	0,98	0,203	0,092	ACEPTA Ho	
Río Claro en Rauquén	$F(x) = e^{-e^{-0.0026 (x-1.262,4)}}$	0,95	0,457	0,157	ACEPTA Ho	
Río Perquilauquén en San Manuel	$F(x) = e^{-e^{-0.0048(x-497.5)}}$	0,98	0,198	0,103	ACEPTA Ho	
Río Teno después de Junta con Claro	$F(x) = e^{-e^{-0.0049(x-337,7)}}$	0,98	0,198	0,121	ACEPTA Ho	
Río Teno Bajo Quebrada Infiernillo	$F(x) = e^{-e^{-0.0152(x-134.8)}}$	0,97	0,301	0,138	ACEPTA Ho	
Río Purapel en Sauzal	$F(x) = e^{-e^{-0.0104 (x-120.5)}}$	0,94	0,486	0,154	ACEPTA Ho	

^{*}Estación con baja calidad de aceptación por bajo número de datos en la estación

Tabla N°5: Ajuste de la función de Goodrich

Estaciones	Función de Goodrich ajustada	\mathbb{R}^2		K-S	3
			Dt	Dc	Resultado
Río Achibueno en la Recova	$F(X) = 1 - e^{-4.02E^{-7}(x - (-85.3))^{1/0.49}}$	0,98	0,294	0,098	ACEPTA Ho
Río Ancoa en el Morro	$F(X) = 1 - e^{-2.5E^{-3}(x-98.9)^{1/0.89}}$	0,96	0,198	0,132	ACEPTA Ho
Río Loncomilla en las Brisas	$F(X) = 1 - e^{-1.95E^{-11}(x - (-1.266))^{1/0.35}}$	0,98	0,280	0,098	ACEPTA Ho
Río Claro en Camarico	$F(X) = 1 - e^{-5E^{-4}(x-55,3)^{1/0,8}}$	0,99	0,210	0,067	ACEPTA Ho
Río Cauquenes en Desembocadura	$F(X) = 1 - e^{-6.4E^{-7}(x - (-222.8))^{1/0.46}}$	0,94	0,289	0,173	ACEPTA Ho
Río Colorado en Junta con Palos	$F(X) = 1 - e^{-3.3E^{-7}(x - (-29.7))^{1/0.40}}$	0,99	0,236	0,068	ACEPTA Ho
Río Claro en los Queñes	$F(X) = 1 - e^{-1.9E^{-5}(x-220,2)^{1/0.36}}$	-	0,289	-	-
Río Maule en Armerillo	$F(X) = 1 - e^{-1.7E^{-16}(x - (-1.455))^{1/0.22}}$	0,95	0,270	0,140	ACEPTA Ho
Río Cauquenes en el Arrayán	$F(X) = 1 - e^{-4.3E^{-7}(x - (-214.9))^{1/0.45}}$	0,97	0,294	0,134	ACEPTA Ho
Río Loncomilla en Bodega	$F(X) = 1 - e^{-4.6E^{-13}(x - (-214.9))^{1/0.29}}$	0,99	0,284	0,070	ACEPTA Ho

Estaciones	Función de Goodrich ajustada	\mathbb{R}^2	K-S		
25 MCTONES	Tuncton de Goodfren ajastada		Dt	Dc	Resultado
Río Longaví en el Castillo	$F(X) = 1 - e^{-7.7E^{-7}(x - (-223.8))^{1/0.51}}$	0,99	0,210	0,088	АСЕРТА Но
Río Maule en Forel	$F(X) = 1 - e^{-2.9E^{-7}(x-(-3.802))^{1/0.61}}$	0,93	0,328	0,141	ACEPTA Ho
Río Mataquito en Licantén	$F(X) = 1 - e^{-7.9E^{-7}(x - (-389,2))^{1/0,56}}$	0,96	0,294	0,110	ACEPTA Ho
Río Loanco en Desembocadura	$F(X) = 1 - e^{-1.1E^{-6}(x-(-271))^{1/0.47}}$	0,94	0,294	0,151	ACEPTA Ho
Río Maule en Longitudinal	$F(X) = 1 - e^{-3.2E^{-10}(x - (-623.2))^{1/0.35}}$	0,98	0,207	0,113	ACEPTA Ho
Río Melado en El Salto	$F(X) = 1 - e^{-8.2E^{-20}(x - 660.9)^{1/0.13}}$	0,93	0,624	0,159	ACEPTA Ho
Río Purapel en Nirivilo	$F(X) = 1 - e^{-7.1E^{-6}(x-(-48.8))^{1/0.44}}$	0,97	0,198	0,102	ACEPTA Ho
Río Perquilauquén en Ñiquen	$F(X) = 1 - e^{-2.03E^{-15}(x - (-733.3))^{1/0.22}}$	0,97	0,294	0,129	ACEPTA Ho
Río Palos en Junta con Colorado	$F(X) = 1 - e^{-1.6E^{-7}(x - (-101.4))^{1/0.38}}$	0,99	0,215	0,077	ACEPTA Ho
Río Putagán en Yerbas Buenas	$F(X) = 1 - e^{-5.9E^{-7}(x-(-58,4))^{1/0.43}}$	0,98	0,294	0,082	ACEPTA Ho
Río Perquilauquén en Quella	$F(X) = 1 - e^{-7.6E^{-9}(x - (-309.5))^{1/0.39}}$	0,97	0,207	0,098	ACEPTA Ho
Río Longaví en Quiriquína	$F(X) = 1 - e^{-2.6E^{-8}(x-(-337))^{1/0.42}}$	0,99	0,198	0,063	ACEPTA Ho
Río Lircay en Puente Las Rastras	$F(X) = 1 - e^{1.1E^{-5}(x-(-43.3))^{1/0.52}}$	0,98	0,203	0,085	ACEPTA Ho

Estaciones	Función de Goodrich ajustada	R ²		3	
			Dt	Dc	Resultado
Río Claro en Rauquén	$F(X) = 1 - e^{1.1E^{18}(x - (-748,1))^{1/0.19}}$	0,99	0,457	0,077	ACEPTA Ho
Río Perquilauquén en San Manuel	$F(X) = 1 - e^{-3.2E^{-11}(x - (-236.9))^{1/0.28}}$	0,99	0,198	0,041	ACEPTA Ho
Río Teno después de Junta con Claro	$F(X) = 1 - e^{-4.7E^{-7}(x - (-105,1))^{1/0.44}}$	0,98	0,198	0,091	ACEPTA Ho
Río Teno Bajo Quebrada Infiernillo	$F(X) = 1 - e^{-2.1E^{-7}(x - (-44,9))^{1/0,36}}$	0,98	0,301	0,080	ACEPTA Ho
Río Purapel en Sauzal	$F(X) = 1 - e^{-7,2E^{-14}(x - (-347,2))^{1/0,21}}$	0,98	0,486	0,101	ACEPTA Ho

^{- :} No se justó a la función

Tabla $N^{\circ}6$: Ajuste de la función Log-Normal

Esta de la com	Función de Log-Normal			K-S	
Estaciones	ajustada	\mathbb{R}^2	Dt	Dc	Resultado
Río Achibueno en la Recova	$F(x) = \int_{0}^{x} \frac{1}{2\Pi} \frac{1}{x_{0,6}} e^{-\frac{1}{2} \left(\frac{\ln x - 6.8}{0.6}\right)^{2}} dx$	0,97	0,294	0,141	АСЕРТА Но
Río Ancoa en el Morro	$F(x) = \int_{0}^{x} \frac{1}{2\Pi} \frac{1}{x_{0,5}} e^{-\frac{1}{2} \left(\frac{\ln x - 5, 6}{0, 5}\right)^{2}} dx$	0,97	0,198	0,131	ACEPTA Ho
Río Loncomilla en las Brisas	$F(x) = \int_{0}^{x} \frac{1}{2\Pi} \frac{1}{x_{0,63}} e^{-\frac{1}{2} \left(\frac{\ln x - 8,03}{0,63}\right)^{2}} dx$	0,95	0,280	0,126	ACEPTA Ho
Río Claro en Camarico	$F(x) = \int_{0}^{x} \frac{1}{2\Pi} \frac{1}{x_{0,77}} e^{-\frac{1}{2} \left(\frac{\ln x - 5.9}{0.77}\right)^{2}} dx$	0,98	0,210	0,104	АСЕРТА Но
Río Cauquenes en Desembocadura	$F(x) = \int_{0}^{x} \frac{1}{2\Pi} \frac{1}{x1,04} e^{-\frac{1}{2} \left(\frac{\ln x - 5,54}{1,04}\right)^{2}} dx$	0,96	0,289	0,108	АСЕРТА Но
Río Colorado en Junta con Palos	$F(x) = \int_{0}^{x} \frac{1}{2\Pi} \frac{1}{x_{0,51}} e^{-\frac{1}{2} \left(\frac{\ln x - 5,72}{0,51}\right)^{2}} dx$	0,98	0,236	0,085	АСЕРТА Но

The desired and the second	Función de Log-Normal			K-S	
Estaciones	ajustada	\mathbb{R}^2	Dt	Dc	Resultado
Río Claro en los Queñes	$F(x) = \int_{0}^{x} \frac{1}{2\Pi} \frac{1}{x0,6} e^{-\frac{1}{2} \left(\frac{\ln (x-5,41)}{0.6}\right)^{2}} dx$	0,95	0,289	0,167	ACEPTA Ho
Río Maule en Armerillo	$F(x) = \int_{0}^{x} \frac{1}{2\Pi} \frac{1}{x0,69} e^{-\frac{1}{2} \left(\frac{\ln x - 7,02}{0,69}\right)^{2}} dx$	0,92	0,270	0,201	АСЕРТА Но
Río Cauquenes en el Arrayán	$F(x) = \int_{0}^{x} \frac{1}{2\Pi} \frac{1}{x_{1,1}} e^{-\frac{1}{2} \left(\frac{\ln x - 5, 7}{1, 1}\right)^{2}} dx$	0,95	0,294	0,171	АСЕРТА Но
Río Loncomilla en Bodega	$F(x) = \int_{0}^{x} \frac{1}{2\Pi} \frac{1}{x0,76} e^{-\frac{1}{2} \left(\frac{\ln x - 7,51}{0,76}\right)^{2}} dx$	0,96	0,284	0,140	АСЕРТА Но
Río Longaví en el Castillo	$F(x) = \int_{0}^{x} \frac{1}{2\Pi} \frac{1}{x \cdot 0.9} e^{-\frac{1}{2} \left(\frac{\ln x - 6.5}{0.9}\right)^{2}} dx$	0,95	0,210	0,113	АСЕРТА Но
Río Maule en Forel	$F(x) = \int_0^x \frac{1}{2\Pi} \frac{1}{x_{1,4}} e^{-\frac{1}{2} \left(\frac{\ln x - 7.8}{1.4}\right)^2} dx$	0,96	0,328	0,124	АСЕРТА Но

Estadones	Función de Log-Normal		K-S			
Estaciones	ajustada	\mathbb{R}^2	Dt	Dc	Resultado	
Río Mataquito en Licantén	$F(x) = \int_{0}^{x} \frac{1}{2\Gamma} \frac{1}{x_{0,9}} e^{-\frac{1}{2} \left(\frac{\ln x - 7, 2}{0,9}\right)^{2}} dx$	0,93	0,294	0,186	АСЕРТА Но	
Río Loanco en Desembocadura	$F(x) = \int_{0}^{x} \frac{1}{2\Pi} \frac{1}{x_{1,5}} e^{-\frac{1}{2} \left(\frac{\ln x - 4.9}{1.5}\right)^{2}} dx$	0,96	0,294	0,129	АСЕРТА Но	
Río Maule en Longitudinal	$F(x) = \int_{0}^{x} \frac{1}{2\Pi} \frac{1}{x_{0,7}} e^{-\frac{1}{2} \left(\frac{\ln x - 7,02}{0,7}\right)^{2}} dx$	0,93	0,207	0,173	АСЕРТА Но	
Río Melado en El Salto	$F(x) = \int_{0}^{x} \frac{1}{2\Gamma} \frac{1}{x0,04} e^{-\frac{1}{2} \left(\frac{\ln x - 6.8}{0.04}\right)^{2}} dx$	0,95	0,624	0,218	АСЕРТА Но	
Río Purapel en Nirivilo	$F(x) = \int_{0}^{x} \frac{1}{2\Gamma} \frac{1}{x_{1,1}} e^{-\frac{1}{2} \left(\frac{\ln x - 4, 3}{1, 1}\right)^{2}} dx$	0,89	0,198	0,196	АСЕРТА Но	
Río Perquilauquén en Ñiquen	$F(x) = \int_{0}^{x} \frac{1}{2\Gamma} \frac{1}{x_{0,7}} e^{-\frac{1}{2} \left(\frac{\ln x - 6.5}{0.7}\right)^{2}} dx$	0,92	0,294	0,148	АСЕРТА Но	

Estadones	Función de Log-Normal			K-S	
Estaciones	ajustada	\mathbb{R}^2	Dt	Dc	Resultado
Río Palos en Junta con Colorado	$F(x) = \int_{0}^{x} \frac{1}{2\Gamma} \frac{1}{x_{0,7}} e^{-\frac{1}{2} \left(\frac{\ln x - 5, 3}{0, 7}\right)^{2}} dx$	0,94	0,215	0,167	АСЕРТА Но
Río Putagán en Yerbas Buenas	$F(x) = \int_{0}^{x} \frac{1}{2\Gamma} \frac{1}{x_{0,6}} e^{-\frac{1}{2} \left(\frac{\ln x - 5,7}{0,6}\right)^{2}} dx$	0,97	0,294	0,138	АСЕРТА Но
Río Perquilauquén en Quella	$F(x) = \int_{0}^{x} \frac{1}{2\Gamma} \frac{1}{x0,7} e^{-\frac{1}{2} \left(\frac{\ln x - 6.8}{0.7}\right)^{2}} dx$	0,97	0,207	0,140	АСЕРТА Но
Río Longaví en Quiriquína	$F(x) = \int_{0}^{x} \frac{1}{2\Gamma} \frac{1}{x_{0,8}} e^{-\frac{1}{2} \left(\frac{\ln x - 6.7}{0.8}\right)^{2}} dx$	0,97	0,198	0,107	АСЕРТА Но
Río Lircay en Puente Las Rastras	$F(x) = \int_{0}^{x} \frac{1}{2\Gamma} \frac{1}{x_{1,1}} e^{-\frac{1}{2} \left(\frac{\ln x - 5, 4}{1, 1}\right)^{2}} dx$	0,90	0,203	0,198	АСЕРТА Но
Río Claro en Rauquén	$F(x) = \int_{0}^{x} \frac{1}{2\Gamma} \frac{1}{x \cdot 0.4} e^{-\frac{1}{2} \left(\frac{\ln x - 7.2}{0.4}\right)^{2}} dx$	0,95	0,457	0,125	АСЕРТА Но

Estaciones	Función de Log-Normal			K-S	
Estaciones	ajustada	\mathbb{R}^2	Dt	Dc	Resultado
Río Perquilauquén en San Manuel	$F(x) = \int_{0}^{x} \frac{1}{2\Gamma} \frac{1}{x0.6} e^{-\frac{1}{2} \left(\frac{\ln x - 6.3}{0.6}\right)^{2}} dx$	0,95	0,198	0,129	ACEPTA Ho
Río Teno después de Junta con Claro	$F(x) = \int_{0}^{x} \frac{1}{2\Gamma} \frac{1}{x0,7} e^{-\frac{1}{2} \left(\frac{\ln x - 5,9}{0,7}\right)^{2}} dx$	0,97	0,198	0,125	АСЕРТА Но
Río Teno Bajo Quebrada Infiernillo	$F(x) = \int_{0}^{x} \frac{1}{2\Gamma} \frac{1}{x0.6} e^{-\frac{1}{2} \left(\frac{\ln x - 5.01}{0.6}\right)^{2}} dx$	0,96	0,301	0,145	АСЕРТА Но
Río Purapel en Sauzal	$F(x) = \int_{0}^{x} \frac{1}{2\Gamma} \frac{1}{x^{2,5}} e^{-\frac{1}{2} \left(\frac{\ln x - 4, 2}{2, 5}\right)^{2}} dx$	0,7	0,486	0,224	АСЕРТА Но

Tabla N°7: Ajuste de la función Pearson tipo III

D	Función de Pearson III			K-S	S
Estaciones	ajustada	R^2	Dt	Dc	Resultado
Río Achibueno en la Recova	$F(x) = \frac{1}{181,8\Gamma(11,1)} \int_{0}^{x} e^{-\left(\frac{x - (-924,9)}{(-924,9)}\right)} \left(\frac{x - (-924,9)}{(-924,9)}\right) dx$	0,98	0,294	0,113	АСЕРТА Но
Río Ancoa en el Morro	$F(x) = \frac{1}{160,8\Gamma(1,3)} \int_{0}^{x} e^{-\left(\frac{x-94,14}{96,14}\right)} \left(\frac{x-96,1}{96,1}\right) dx$	0,92	0,198	0,243	ACEPTA H1
Río Loncomilla en las Brisas	$F(x) = \frac{1}{200.9\Gamma(86.1)} \int_{0}^{x} e^{-\left(\frac{x - (-13.781)}{(-13.781)}\right)} \left(\frac{x - (-13.781)}{(-13.781)}\right) dx$	0,98	0,280	0,095	ACEPTA Ho
Río Claro en Camarico	$F(x) = \frac{1}{237,5\Gamma(1,92)} \int_{0}^{x} e^{-\left(\frac{x-7,05}{7,05}\right)} \left(\frac{x-7,05}{7,05}\right) dx$	0,97	0,210	0,197	ACEPTA Ho
Río Cauquenes en Desembocadura	$F(x) = \frac{1}{74,4\Gamma(15,02)} \int_{0}^{x} e^{-\left(\frac{x-(-737,9)}{(-737,9)}\right)} \left(\frac{x-(-737,9)}{(-737,9)}\right) dx$	0,93	0,289	0,180	ACEPTA Ho
Río Colorado en Junta con Palos	$F(x) = \frac{1}{29.9\Gamma(29.1)} \int_{0}^{x} e^{-\left(\frac{x - (-525.8)}{(-525.8)}\right)} \left(\frac{x - (-525.8)}{(-525.8)}\right) dx$	0,99	0,236	0,074	ACEPTA Ho
Río Claro en los Queñes	$F(x) = \frac{1}{16\Gamma(74,1)} \int_{0}^{x} e^{-\left(\frac{x - (-923,5)}{(-923,5)}\right)} \left(\frac{x - (-923,5)}{(-923,5)}\right) dx$	0,97	0,289	0,097	ACEPTA Ho
Río Maule en Armerillo	$F(x) = \frac{1}{64,2\Gamma(120,7)} \int_{0}^{x} e^{-\left(\frac{x-(-6.390)}{-6.390}\right)} \left(\frac{x-(-6.390)}{(-6.390)}\right) dx$	0,94	0,270	0,164	ACEPTA Ho

Estaciones	Función de Pearson III			K-S	5
Estaciones	ajustada	\mathbb{R}^2	Dt	Dc	Resultado
Río Cauquenes en el Arrayán	$F(x) = \frac{1}{74.5\Gamma(16.5)} \int_{0}^{x} e^{-\left(\frac{x - (-804.9)}{(-804.9)}\right)} \left(\frac{x - (-804.9)}{(-804.9)}\right) dx$	0,97	0,294	0,098	ACEPTA Ho
Río Loncomilla en Bodega	$F(x) = \frac{1}{28.1\Gamma(1.790)} \int_{0}^{x} e^{-\left(\frac{x-(-48.121)}{(-48.121)}\right)} \left(\frac{x-(-48.121)}{(-48.121)}\right) dx$	ı	0,284	-	-
Río Longaví en el Castillo	$F(x) = \frac{1}{205,1\Gamma(9,2)} \int_{0}^{x} e^{-\left(\frac{x-(-940,3)}{(-940,3)}\right)} \left(\frac{x-(-940,3)}{(-940,3)}\right) dx$	0,99	0,210	0,115	ACEPTA Ho
Río Maule en Forel	$F(x) = \frac{1}{2.7\Gamma(4,6)} \int_{0}^{x} e^{-\left(\frac{x-(-7.302)}{(-7.032)}\right)} \left(\frac{x-(-7.032)}{(-7.032)}\right) dx$	0,93	0,328	0,149	ACEPTA Ho
Río Mataquito en Licantén	$F(x) = \frac{1}{486,2\Gamma(6,6)} \int_{0}^{x} e^{-\left(\frac{x-(-1.410)}{(-1.410)}\right)} \left(\frac{x-(-1.410)}{(-1.410)}\right) dx$	0,97	0,294	0,100	ACEPTA Ho
Río Loanco en Desembocadura	$F(x) = \frac{1}{78,4\Gamma(12,9)} \int_{0}^{x} e^{-\left(\frac{x-(-771,1)}{(-771,1)}\right)} \left(\frac{x-(-771,1)}{(-711,1)}\right) dx$	0,94	0,294	0,130	ACEPTA Ho
Río Maule en Longitudinal	$F(x) = \frac{1}{86,4\Gamma(79,1)} \int_{0}^{x} e^{-\left(\frac{x - (-5.459)}{(-5.459)}\right)} \left(\frac{x - (-5.459)}{(-5.459)}\right) dx$	0,97	0,207	0,118	АСЕРТА Но
Río Melado en El Salto	$F(x) = \frac{1}{9.5\Gamma(14.9)} \int_{0}^{x} e^{-\left(\frac{x-793}{793}\right)} \left(\frac{x-793}{793}\right) dx$	0,83	0,624	0,238	ACEPTA Ho

Estasianas	Función de Pearson III			K-S	5
Estaciones	ajustada	\mathbb{R}^2	Dt	Dc	Resultado
Río Purapel en Nirivilo	$F(x) = \frac{1}{16,2\Gamma(19,3)} \int_{0}^{x} e^{-\left(\frac{x-(-206,8)}{(-206,8)}\right)} \left(\frac{x-(-206,8)}{(-206,8)}\right) dx$	0,97	0,198	0,128	ACEPTA Ho
Río Perquilauquén en Ñiquen	$F(x) = \frac{1}{35,7\Gamma(111,3)} \int_{0}^{x} e^{-\left(\frac{x-(-3.206)}{(-3.206)}\right)} \left(\frac{x-(-3.206)}{(-3.206)}\right) dx$	0,96	0,294	0,153	ACEPTA Ho
Río Palos en Junta con Colorado	$F(x) = \frac{1}{21.9\Gamma(42.1)} \int_{0}^{x} e^{-\left(\frac{x - (-673.5)}{(-673.5)}\right)} \left(\frac{x - (-673.5)}{(-673.5)}\right) dx$	0,98	0,215	0,086	ACEPTA Ho
Río Putagán en Yerbas Buenas	$F(x) = \frac{1}{42,3\Gamma(20,6)} \int_{0}^{x} e^{-\left(\frac{x - (-507,9)}{(-507,9)}\right)} \left(\frac{x - (-507,9)}{(-507,9)}\right) dx$	0,98	0,294	0,090	ACEPTA Ho
Río Perquilauquén en Quella	$F(x) = \frac{1}{101,5\Gamma(34,2)} \int_{0}^{x} e^{-\left(\frac{x-(-2.376)}{(-2.376)}\right)} \left(\frac{x-(-2.376)}{(-2.376)}\right) dx$	0,97	0,207	0,106	ACEPTA Ho
Río Longaví en Quiriquína	$F(x) = \frac{1}{135,2\Gamma(22,5)} \int_{0}^{x} e^{-\left(\frac{x-(-1.962)}{(-1.962)}\right)} \left(\frac{x-(-1.962)}{(-1.962)}\right) dx$	-	0,198	-	-
Río Lircay en Puente Las Rastras	$F(x) = \frac{1}{64,3\Gamma(8,47)} \int_{0}^{x} e^{-\left(\frac{x-(-242)}{(242,03)}\right)} \left(\frac{x-(-242,03)}{(-242,03)}\right) dx$	0,77	0,203	0,528	ACEPTA H1
Río Claro en Rauquén	$F(x) = \frac{1}{72,2\Gamma(45,9)} \int_{0}^{x} e^{-\left(\frac{x-(1.831)}{(-1.831)}\right)} \left(\frac{x-(-1.831)}{(-1.831)}\right) dx$	0,97	0,457	0,135	ACEPTA Ho

Estaciones	Función de Pearson III			K-\$	S
Estaciones	Ajustada	\mathbb{R}^2	Dt	Dc	Resultado
Río Perquilauquén en San Manuel	$F(x) = \frac{1}{2,4\Gamma(11.775)} \int_{0}^{x} e^{-\left(\frac{x-(-28.133)}{(-28.132)}\right)} \left(\frac{x-(-28.133)}{(-28.133)}\right) dx$	1	0,198	-	-
Río Teno después de Junta con Claro	$F(x) = \frac{1}{62,7\Gamma(17,7)} \int_{0}^{x} e^{-\left(\frac{x-(-651,3)}{(-651,3)}\right)} \left(\frac{x-(-651,3)}{(-651,3)}\right) dx$				ACEPTA Ho
Río Teno Bajo Quebrada Infiernillo	$F(x) = \frac{1}{10,03\Gamma(70,7)} \int_{0}^{x} e^{-\left(\frac{x-(-536,6)}{(-536,6)}\right)} \left(\frac{x-(-536,6)}{(-536,6)}\right) dx$	0,98	0,301	0,096	ACEPTA Ho
Río Purapel en Sauzal	$F(x) = \frac{1}{13.7\Gamma(82.3)} \int_{0}^{x} e^{-\left(\frac{x - (-946.5)}{(-946.5)}\right)} \left(\frac{x - (-946.5)}{(-946.5)}\right) dx$	0,96	0,486	0,111	ACEPTA Ho

^{- :} No se justó a la función.

6.4 Probabilidad de Caudales Punta para Distintos Periodos de Retorno

En las tablas que a continuación se presentan se encuentran los valores probables de caudales punta, asociados a distintos periodos de retorno (10, 20, 30, 20, 50 y 100 años), con el objetivo de poder determinar alguna variación en los caudales de crecida a lo largo del tiempo.

Tabla N°8: Caudales máximos asociados a periodos de retorno, en la estación Río Achibueno en La Recova en m³/s

Periodo	Probabilidad	Prob. de				
de	de	no	Goodrich	Gumbel	Log-Normal	Pearson III
retorno	excedencia	excedencia				
10	0,1	0,9	1.916	1.885	2.004	1.876
20	0,05	0,95	2.191	2.225	2.491	2.158
30	0,033	0,967	2.336	2.421	2.790	2.313
40	0,025	0,975	2.434	2.559	3.009	2.418
50	0,02	0,98	2.507	2.665	3.183	2.498
100	0,01	0,99	2.722	2.995	3.748	2.737

Periodo de registro de la estación, 1987-2006 Periodo de retorno de confiabilidad, hasta 40 años

Tabla N°9: Caudales máximos asociados a periodos de retorno, en la estación Río Ancoa en el Morro en m³/s

Periodo de retorno	Probabilidad de excedencia	Prob. de no excedencia	Goodrich	Gumbel	Log-Normal	Pearson III
10	0,1	0,9	540	498	527	466
20	0,05	0,95	657	600	643	578
30	0,033	0,967	724	658	713	643
40	0,025	0,975	771	699	764	689
50	0,02	0,98	807	731	804	725
100	0,01	0,99	919	830	934	836

Periodo de registro de la estación, 1960-2006 Periodo de retorno de confiabilidad, hasta 94 años

Tabla $N^{\circ}10$: Caudales máximos asociados a periodos de retorno, en la estación Río Loncomilla en Las Brisas en m^3/s

Periodo de retorno	Probabilidad de excedencia	Prob. de no excedencia	Goodrich	Gumbel	Log-Normal	Pearson III
10	0,1	0,9	6.114	6.089	7.003	6.032
20	0,05	0,95	6.825	7.139	8.833	6.781
30	0,033	0,967	7.192	7.743	9.968	7.179
40	0,025	0,975	7.435	8.169	10.804	7.447
50	0,02	0,98	7.616	8.499	11.472	7.647
100	0,01	0,99	8.137	9.517	13.655	8.238

Periodo de registro de la estación, 1983-2005 Periodo de retorno de confiabilidad, hasta 46 años

Tabla N°11: Caudales máximos asociados a periodos de retorno, en la estación Río Claro en Camarico en m^3/s

Periodo	Probabilidad	Prob. de				
de	de	no	Goodrich	Gumbel	Log-Normal	Pearson III
retorno	excedencia	excedencia				
10	0,1	0,9	911	893	961	749
20	0,05	0,95	1.111	1.078	1.271	935
30	0,033	0,967	1.224	1.184	1.469	1.042
40	0,025	0,975	1.302	1.259	1.618	1.117
50	0,02	0,98	1.362	1.317	1.739	1.175
100	0,01	0,99	1.545	1.497	2.144	1.354

Periodo de registro de la estación, 1963-2006 Periodo de retorno de confiabilidad, hasta 84 años

Tabla N°12: Caudales máximos asociados a periodos de retorno, en la estación Río Cauquenes en Desembocadura en m³/s

Periodo de	Probabilidad de	Prob. De no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia)	
10	0,1	0,9	772	755	970	760
20	0,05	0,95	899	917	1.416	890
30	0,033	0,967	967	1.010	1.723	961
40	0,025	0,975	1.012	1.076	1.965	1.010
50	0,02	0,98	1.045	1.127	2.166	1.046
100	0,01	0,99	1.143	1.284	2.876	1.155

Periodo de registro de la estación, 1986-2006 Periodo de retorno de confiabilidad, hasta 42 años

Tabla N°13: Caudales máximos asociados a periodos de retorno, en la estación Río Colorado en Junta con Palos en m³/s

Periodo de	Probabilidad de	Prob. De	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia			S	
10	0,1	0,9	558	553	582	551
20	0,05	0,95	624	643	700	620
30	0,033	0,967	659	695	771	657
40	0,025	0,975	682	732	822	682
50	0,02	0,98	699	760	862	701
100	0,01	0,99	748	847	990	757

Periodo de registro de la estación, 1975-2006 Periodo de retorno de confiabilidad, hasta 64 años

Tabla N°14: Caudales máximos asociados a periodos de retorno, en la estación Río Claro en Los Queñes en m³/s

Periodo	Probabilidad	Prob. De				
de	de	no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia				
10	0,1	0,9	-	442	485	440
20	0,05	0,95	-	519	603	495
30	0,033	0,967	-	564	676	525
40	0,025	0,975	-	595	730	545
50	0,02	0,98	-	619	772	560
100	0,01	0,99	-	694	911	604

Periodo de registro de la estación, 1986-2006 Periodo de retorno de confiabilidad, hasta 42 años

Tabla $N^{\circ}15$: Caudales máximos asociados a periodos de retorno, en la estación Río Maule en Armerillo en m^3/s

Periodo	Probabilidad	Prob. De				
de	de	no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia				
10	0,1	0,9	2.248	2.277	2.716	2.261
20	0,05	0,95	2.470	2.672	3.489	2.540
30	0,033	0,967	2.582	2.900	3.975	2.687
40	0,025	0,975	2.655	3.061	4.337	2.786
50	0,02	0,98	2.709	3.185	4.626	2.860
100	0,01	0,99	2.862	3.569	5.584	3.078

Periodo de registro de la estación, 1960-1978/2001-2006 Periodo de retorno de confiabilidad, hasta 50 años

Tabla $N^{\circ}16$: Caudales máximos asociados a periodos de retorno, en la estación Río Cauquenes en el Arrayán en m^3/s

Periodo	Probabilidad	Prob. de				
de	de	no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia				
10	0,1	0,9	830	816	1.130	782
20	0,05	0,95	961	986	1.664	916
30	0,033	0,967	1.030	1.084	2.035	989
40	0,025	0,975	1.076	1.152	2.328	1.039
50	0,02	0,98	1.111	1.206	2.572	1.076
100	0,01	0,99	1.211	1.370	3.439	1.188

Periodo de registro de la estación, 1987-2006 Periodo de retorno de confiabilidad, hasta 40 años

Tabla $N^{\circ}17$: Caudales máximos asociados a periodos de retorno, en la estación Río Loncomilla en Bodega en m^3/s

Periodo de	Probabilidad de	Prob. de no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia			8	
10	0,1	0,9	3.792	3.792	1.130	-
20	0,05	0,95	4.213	4.460	1.664	-
30	0,033	0,967	4.428	4.844	2.035	-
40	0,025	0,975	4.569	5.115	2.328	-
50	0,02	0,98	4.674	5.324	2.572	-
100	0,01	0,99	4.974	5.972	3.439	-

Periodo de registro de la estación, 1985-2006 Periodo de retorno de confiabilidad, hasta 44 años

Tabla $N^{\circ}18$: Caudales máximos asociados a periodos de retorno, en la estación Río Longaví en el Castillo en m^3/s

Periodo	Probabilidad	Prob. de				
de	de	no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia				
10	0,1	0,9	1.798	1.759	4.825	1.725
20	0,05	0,95	2.089	2.109	6.364	2.021
30	0,033	0,967	2.244	2.310	7.350	2.182
40	0,025	0,975	2.348	2.451	8.091	2.293
50	0,02	0,98	2.426	2.561	8.690	2.377
100	0,01	0,99	2.656	2.900	10.696	2.629

Periodo de registro de la estación, 1964-2006 Periodo de retorno de confiabilidad, hasta 84 años

Tabla $N^{\circ}19$: Caudales máximos asociados a periodos de retorno, en la estación Río Maule en Forel en m^3/s

Periodo de	Probabilidad de	Prob. de no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia				
10	0,1	0,9	13.042	12.687	2.315	12.475
20	0,05	0,95	15.992	15.891	3.259	15.444
30	0,033	0,967	17.594	17.735	3.893	17.096
40	0,025	0,975	18.686	19.034	4.383	18.239
50	0,02	0,98	19.511	20.039	4.788	19.111
100	0,01	0,99	21.963	23.147	6.187	21.751

Periodo de registro de la estación, 1988-2006 Periodo de retorno de confiabilidad, hasta 32 años

Tabla N°20: Caudales máximos asociados a periodos de retorno, en la estación Río Mataquito en Licantén en m³/s

Periodo	Probabilidad	Prob. de				
de	de	no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia				
10	0,1	0,9	3.508	3.421	14.943	3.407
20	0,05	0,95	4.122	4.121	25.299	4.026
30	0,033	0,967	4.452	4.524	33.273	4.368
40	0,025	0,975	4.675	4.808	39.942	4.604
50	0,02	0,98	4.843	5.028	45.757	4.782
100	0,01	0,99	5.340	5.707	67.925	5.321

Periodo de registro de la estación, 1987-2006 Periodo de retorno de confiabilidad, hasta 40 años

Tabla $N^{\circ}21$: Caudales máximos asociados a periodos de retorno, en la estación Río Loanco en Desembocadura en m^3/s

Periodo	Probabilidad	Prob. de				
de	de	no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia				
10	0,1	0,9	684	667	4.113	636
20	0,05	0,95	810	825	5.667	764
30	0,033	0,967	877	915	6.695	834
40	0,025	0,975	922	980	7.482	882
50	0,02	0,98	956	1.029	8.127	918
100	0,01	0,99	1.054	1.182	10.336	1.025

Periodo de registro de la estación, 1987-2006 Periodo de retorno de confiabilidad, hasta 40 años

Tabla $N^{\circ}22$: Caudales máximos asociados a periodos de retorno, en la estación Río Maule en Longitudinal en m^3/s

Periodo	Probabilidad	Prob. de				
de	de	no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia				
10	0,1	0,9	2.391	2.382	956	2.368
20	0,05	0,95	2.685	2.813	1.632	2.678
30	0,033	0,967	2.836	3.061	2.155	2.842
40	0,025	0,975	2.937	3.236	2.594	2.953
50	0,02	0,98	3.011	3.371	2.978	3.036
100	0,01	0,99	3.226	3.790	4.447	3.280

Periodo de registro de la estación, 1962-2005 Periodo de retorno de confiabilidad, hasta 86 años

Tabla $N^{\circ}23$: Caudales máximos asociados a periodos de retorno, en la estación Río Melado en El Salto en m^3/s

Periodo de retorno	Probabilidad de excedencia	Prob. de no excedencia	Goodrich	Gumbel	Log-Normal	Pearson III
10	0,1	0,9	985	989	2.761	978
20	0,05	0,95	996	1.012	3.562	994
30	0,033	0,967	1.002	1.025	4.067	1.003
40	0,025	0,975	1.005	1.035	4.443	1.009
50	0,02	0,98	1.008	1.042	4.746	1.014
100	0,01	0,99	1.015	1.065	5.746	1.028

Periodo de registro de la estación, 2003-2006 Periodo de retorno de confiabilidad, hasta 8 años

Tabla N°24: Caudales máximos asociados a periodos de retorno, en la estación Río Purapel en Nirivilo en m³/s

Periodo de	Probabilidad de	Prob. de no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia			C	
10	0,1	0,9	201	198	982	195
20	0,05	0,95	232	238	996	226
30	0,033	0,967	248	261	1.003	243
40	0,025	0,975	258	277	1.008	254
50	0,02	0,98	266	290	1.012	263
100	0,01	0,99	290	329	1.023	289

Periodo de registro de la estación, 1960-2006 Periodo de retorno de confiabilidad, hasta 94 años

Tabla $N^{\circ}25$: Caudales máximos asociados a periodos de retorno, en la estación Río Perquilauquen en \tilde{N} iquen en m^{3}/s

Periodo	Probabilidad	Prob. de				
de	de	no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia				
10	0,1	0,9	1.242	1.260	293	1.246
20	0,05	0,95	1.359	1.472	437	1.395
30	0,033	0,967	1.418	1.593	539	1.474
40	0,025	0,975	1.456	1.679	619	1.527
50	0,02	0,98	1.485	1.746	687	1.567
100	0,01	0,99	1.565	1.951	929	1.684

Periodo de registro de la estación, 1987-2006 Periodo de retorno de confiabilidad, hasta 40 años

Tabla $N^{\circ}26$: Caudales máximos asociados a periodos de retorno, en la estación Río Palos en Junta con Colorado en m^3/s

Periodo	Probabilidad	Prob. de	G 1.1			D 111
de	de	no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia				
10	0,1	0,9	439	433	1.573	432
20	0,05	0,95	496	513	2.028	491
30	0,033	0,967	526	559	2.315	523
40	0,025	0,975	546	591	2.528	544
50	0,02	0,98	560	616	2.700	560
100	0,01	0,99	603	693	3.268	608

Periodo de registro de la estación, 1967-2006 Periodo de retorno de confiabilidad, hasta 80 años

Tabla $N^{\circ}27$: Caudales máximos asociados a periodos de retorno, en la estación Río Putagán con Yerbas Buenas en m^3/s

Periodo	Probabilidad	Prob. de				
de	de	no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia				
10	0,1	0,9	619	611	513	611
20	0,05	0,95	700	718	670	695
30	0,033	0,967	742	780	771	741
40	0,025	0,975	771	824	846	772
50	0,02	0,98	792	858	907	795
100	0,01	0,99	854	962	1.109	865

Periodo de registro de la estación, 1987-2006 Periodo de retorno de confiabilidad, hasta 40 años

Tabla $N^{\circ}28$: Caudales máximos asociados a periodos de retorno, en la estación Río Perquilauquén en Quella en m^3/s

Periodo	Probabilidad	Prob. de				
de	de	no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia				
10	0,1	0,9	1.892	1.873	692	1.853
20	0,05	0,95	2.133	2.206	873	2.103
30	0,033	0,967	2.258	2.398	985	2.238
40	0,025	0,975	2.341	2.533	1.068	2.329
50	0,02	0,98	2.403	2.638	1.134	2.397
100	0,01	0,99	2.583	2.961	1.350	2.600

Periodo de registro de la estación, 1963-2005 Periodo de retorno de confiabilidad, hasta 86 años

Tabla $N^{\circ}29$: Caudales máximos asociados a periodos de retorno, en la estación Río Longaví en Quiriquína en m^3/s

Periodo	Probabilidad	Prob. de				
de	de	no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia				
10	0,1	0,9	1.936	1.915	2.258	-
20	0,05	0,95	2.204	2.275	2.928	-
30	0,033	0,967	2.344	2.482	3.351	-
40	0,025	0,975	2.437	2.628	3.667	-
50	0,02	0,98	2.507	2.741	3.921	-
100	0,01	0,99	2.710	3.090	4.764	-

Periodo de registro de la estación, 1960-2006 Periodo de retorno de confiabilidad, hasta 94 años

Tabla N°30: Caudales máximos asociados a periodos de retorno, en la estación Río Lircay en puente las Rastras en m³/s

Periodo de retorno	Probabilidad de excedencia	Prob. de no excedencia	Goodrich	Gumbel	Log-Normal	Pearson III
10	0,1	0,9	559	547	2.256	272
20	0,05	0,95	647	652	2.967	346
30	0,033	0,967	694	712	3.422	388
40	0,025	0,975	726	755	3.763	416
50	0,02	0,98	750	787	4.039	438
100	0,01	0,99	821	889	4.961	504

Periodo de registro de la estación, 1961-2006 Periodo de retorno de confiabilidad, hasta 90 años

Tabla $N^{\circ}31$: Caudales máximos asociados a periodos de retorno, en la estación Río Claro en Rauquén en m^3/s

Periodo de Retorno	Probabilidad de excedencia	Prob. de no excedencia	Goodrich	Gumbel	Log-Normal	Pearson III
10	0,1	0,9	2.086	2.120	867	2.089
20	0,05	0,95	2.230	2.395	1.282	2.291
30	0,033	0,967	2.302	2.553	1.571	2.399
40	0,025	0,975	2.349	2.664	1.799	2.472
50	0,02	0,98	2.383	2.750	1.990	2.527
100	0,01	0,99	2.481	3.016	2.669	2.689

Periodo de registro de la estación, 1999-2006 Periodo de retorno de confiabilidad, hasta 16 años

Tabla N°32: Caudales máximos asociados a periodos de retorno, en la estación Río Perquilauquén en San Manuel en m³/s

Periodo de	Probabilidad de	Prob. de no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia				
10	0,1	0,9	963	962	2.210	-
20	0,05	0,95	1.056	1.111	2.515	-
30	0,033	0,967	1.104	1.197	2.691	-
40	0,025	0,975	1.135	1.257	2.814	-
50	0,02	0,98	1.158	1.303	2.910	-
100	0,01	0,99	1.224	1.448	3.207	-

Periodo de registro de la estación, 1960-2006 Periodo de retorno de confiabilidad, hasta 94 años

Tabla N°33: Caudales máximos asociados a periodos de retorno, en la estación Río Teno después de Junta con Claro en m^3/s

Periodo de Retorno	Probabilidad de excedencia	Prob. de no excedencia	Goodrich	Gumbel	Log-Normal	Pearson III
10	0,1	0,9	811	800	1.135	793
20	0,05	0,95	925	948	1.399	911
30	0,033	0,967	984	1.033	1.560	974
40	0,025	0,975	1.024	1.093	1.678	1.017
50	0,02	0,98	1.054	1.140	1.771	1.050
100	0,01	0,99	1.141	1.283	2.072	1.147

Periodo de registro de la estación, 1960-2006 Periodo de retorno de confiabilidad, hasta 94 años

Tabla $N^{\circ}34$: Caudales máximos asociados a periodos de retorno, en la estación Río Teno bajo Quebrada Infiernillo en m^3/s

Periodo de Retorno	Probabilidad de excedencia	Prob. de no excedencia	Goodrich	Gumbel	Log-Normal	Pearson III
10	0,1	0,9	285	283	897	280
20	0,05	0,95	317	330	1.150	314
30	0,033	0,967	334	357	1.308	332
40	0,025	0,975	345	377	1.426	345
50	0,02	0,98	353	391	1.520	354
100	0,01	0,99	377	437	1.831	381

Periodo de registro de la estación, 1985-2006 Periodo de retorno de confiabilidad, hasta 38 años

Tabla $N^{\circ}35$: Caudales máximos asociados a periodos de retorno, en la estación Río Purapel en Sauzal en m^3/s

Periodo	Probabilidad	Prob. de				
de	de	no	Goodrich	Gumbel	Log-Normal	Pearson III
Retorno	excedencia	excedencia				
10	0,1	0,9	333	338	320	334
20	0,05	0,95	372	407	398	384
30	0,033	0,967	391	447	445	410
40	0,025	0,975	404	475	480	428
50	0,02	0,98	413	497	508	441
100	0,01	0,99	440	564	597	480

Periodo de registro de la estación, 1999-2005 Periodo de retorno de confiabilidad, hasta 14 años

7. ANÁLISIS Y DISCUSIÓN DE RESULTADOS

De los resultados entregados en el capítulo anterior, a continuación se discuten algunos aspectos que se consideran destacables.

7.1 Representatividad de los datos

El primer aspecto importante de mencionar, es que el presente estudio posee como base la información obtenida y procesada para 28 estaciones de tipo fluvial, abarcando todas las cuencas pertenecientes a la Región del Maule de Chile. Sin embargo, ello no significa que representen en forma fidedigna los valores exactos de los caudales punta, debido a ciertos errores que se deben asumir, sobreestimando o subestimando los valores de los datos reales, por razones de error de la evaluación puntual. Esto se debe a que la curva de descarga en su zona alta, normalmente no es medida y solo existe una extrapolación hacia esas zonas poco accesibles. No obstante, se puede considerar que la información con la que se ha contado, representa de un modo importante lo que ocurre en la región del Maule.

7.2 Selección de la información con la que se ha trabajado

Un segundo aspecto importante de discutir, es la forma en la que se ha obtenido la información estadística considerada válida por este estudio. En este marco, se ha preferido trabajar solamente con información real, es decir, no se han completado registros estadísticos, lo cual asegura la fidelidad de dicha información.

Según Linsley *et al* (1988), para que el análisis probabilístico produzca resultados útiles, éste debe comenzar con una serie de datos significativos, adecuados y precisos. En este estudio se trabajó con un conjunto de datos que fueron distribuidos en series, las cuales presentan un amplio registro a través del tiempo, en las que un 42,9% representan más de 40 años y el 57,1% menos de 40 años.

Estudios realizados por Ott, citado por Linsley *et al* (1988), muestran que con un registro de 20 años, la probabilidad es del 80% de que el caudal de diseño sea sobreestimado y que el 45% de los valores sobreestimados excedan en más de un 30% el valor real. Debido a esto, se recomienda usar series de datos superiores a 20 años, para un análisis de frecuencia más preciso.

7.3 La alta variabilidad de los datos

El tercer aspecto a discutir está relacionado con las características de la información utilizada. Se puede apreciar la existencia de una alta variabilidad de los datos en términos generales, ya sea entre estaciones y dentro de una estación determinada.

La variabilidad entre estaciones se puede observar en la figura N°7, que muestra los promedios de las estaciones en estudio, en el cual es posible apreciar un patrón de comportamiento variable de los caudales.

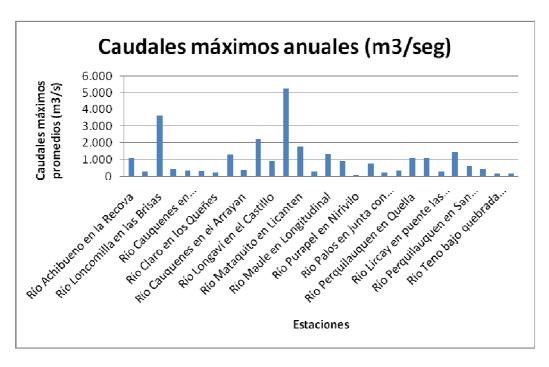


Figura N°7: Gráfico de promedios de los caudales máximos de todas las estaciones.

Como se puede observar en la Figura N°7, la estación Río Maule en Forel, es la que presenta los caudales máximos instantáneos promedios más altos; dicha estación se ubica en la sub cuenca del Maule bajo, a 20 m.s.n.m. con un promedio de 5.238 m³/s. Dentro de la misma cuenca, está la estación Río Purapel en Nirivilo, la cual presenta los valores promedios más bajos de caudales máximos instantáneos en la Región del Maule; esta estación pertenece a la sub cuenca de Perquilauquén bajo, y presenta un promedio de 105,5 m³/s.

Las diferencias que se observan básicamente son función de la magnitud en superficie de cada cuenca que las abastece y del régimen de precipitaciones que presenta cada cuenca.

Con respecto a la variabilidad dentro de las estaciones, ésta se puede explicar por la existencia de años lluviosos y otros más secos, lo cual se puede observar en la Tabla N°2 del capitulo presentación de resultados, la que muestra que un 80% de las estaciones, resultan coincidentes en presentar valores máximos de sus datos en el año 2000, el cual se destaca por

ser uno de los años con precipitaciones más altas en las últimas décadas. Asimismo, se puede observar en la misma tabla que el año 1998, presenta un 80% de las estaciones con los valores más bajos. El año 1998 presentó una alta sequía en la Región del Maule, produciéndose una caída pluviométrica generalizada, la cual, según las estadísticas, superó el record de déficit de los años 1924 y 1968, que se consideraban los más secos del siglo XX.

7.4 Datos Anómalos

La presencia de datos extremos, superiores a los demás registrados, denominados "outliers", se manifiestan en ciertas estaciones. Los "outliers" son datos que se alejan significativamente de la tendencia de la información, y que afectan de una manera considerable la magnitud de los parámetros estadísticos de la serie.

La estación río Claro en Los Queñes, es un ejemplo de lo anterior, dado que no pudo ajustar todos sus valores a la función de distribución de probabilidad de Goodrich. Lo anterior se pudo evidenciar al no cumplirse la restricción que presenta dicha función, la cual dice que la variable aleatoria de interés, en este caso los caudales máximos, deben ser superiores al parámetro X_1 (ver revisión bibliográfica).

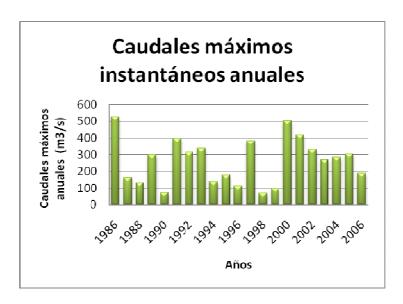


Figura N°8: Estación Río Claro en Los Queñes

La presencia de estos datos se puede deber principalmente a la ocurrencia de máximos históricos de las series derivadas de lluvias excepcionalmente grandes, debido a la directa relación que existe entre las precipitaciones y los caudales máximos (Muñoz, 2003), como también a errores de medición producto de extrapolaciones de la curva de descargas.

7.5 Relaciones entre los caudales máximos

Respecto a la ocurrencia de caudales máximos, y con el fin de comprender de manera más clara las relaciones entre los caudales máximos en el tiempo, se realizó una comparación entre estaciones, a partir de la estación Río Maule en Forel, ya que dicha estación presenta los valores más grandes de caudales máximos, tanto en los valores reales empíricos, como en los valores probables futuros. Para ello se creó el indicador relativo de magnitud de crecidas, definido como:

$$IRmc = \frac{Q \max F}{Q \max i}$$

Donde:

IRmc : Índice relativo de magnitud de crecidas

Q max F: Caudal máximo estación Río Maule en Forel

Q max i : Caudal máximo estación i

A continuación se presentan de manera tabulada los resultados del indicador relativo de magnitud de crecidas, para caudales reales máximos y para valores de caudales máximos probables, para periodos de retorno de 30 y 50 años

Tabla N°36: Caudales máximos reales

		Caudal	Caudal		IRmc	
Estaciones	Caudal max.	max (T=30)	max (T=50)	Caudales reales	T=30	T=50
Río Maule en Forel	17.212,9	17.734,6	20.039,0	1,0	1,0	1,0
Río Loncomilla en las Brisas	7.623,4	7.743,4	8.498,6	2,3	2,3	2,4
Río Mataquito en Licantén	4.638,3	4.844,1	5.324,4	3,7	3,7	3,8
Río Loncomilla en Bodega	4.227,8	4.524,3	5.028,0	4,1	3,9	4,0
Río Maule en Longitudinal	3.064,0	3.061,1	3.371,3	5,6	5,8	5,9
Río Longaví en el Castillo	2.877,9	2.900,0	3.184,6	5,9	6,1	6,3
Río Achibueno en la Recova	2.621,2	2.552,6	2.750,0	6,6	6,9	7,3
Río Longaví en Quiriquína	2.534,9	2.482,0	2.740,8	6,8	7,1	7,3
Río Perquilauquén en Quella	2.319,6	2.420,7	2.665,3	7,4	7,3	7,5
Río Maule en Armerillo	2.305,2	2.398,0	2.637,7	7,5	7,4	7,6
Río Claro en Rauquén	2.100,1	2.309,7	2.560,8	8,2	7,7	7,8
Río Claro en Camarico	1.723,8	1.593,5	1.745,5	9,9	11,1	11,5
Río Perquilauquén en Ñiquen	1.378,6	1.196,6	1.317,4	12,5	14,8	15,2
Río Perquilauquén en San Manuel	1.244,9	1.184,5	1.303,5	13,8	15,0	15,4
Río Teno después de Junta con Claro	1.155,8	1.083,6	1.205,6	14,9	16,4	16,6
Río Ancoa en el Morro	1.080,9	1.033,3	1.139,6	15,9	17,2	17,6
Río Cauquenes en el Arrayán	1.032,1	1.025,4	1.126,6	16,7	17,3	17,8
Río Melado en El Salto	972,0	1.010,2	1.042,2	17,7	17,6	19,2
Río Cauquenes en Desembocadura	922,4	915,5	1.029,1	18,7	19,4	19,5
Río Loanco en Desembocadura	854,9	780,2	857,6	20,1	22,7	23,4
Río Lircay en Puente Las Rastras	850,0	712,0	787,5	20,3	24,9	25,4

		Caudal	Caudal		IRmc	
Estaciones	Caudal max.	max (T=30)	max (T= 50)	Caudales reales	T=30	T=50
Río Colorado en Junta con Palos	689,6	658,1	731,1	24,9	26,9	27,4
Río Palos en Junta con Colorado	597,4	563,9	619,5	28,8	31,4	32,3
Río Claro en los Queñes	527,9	558,7	616,0	32,6	31,7	32,5
Río Teno Bajo Quebrada Infiernillo	358,8	447,1	497,1	47,9	39,7	40,3
Río Purapel en Sauzal	321,2	357,3	391,4	53,6	49,6	51,2
Río Purapel en Nirivilo	315,2	261,2	289,9	54,6	67,9	69,1

Donde:

Caudal max : Son los caudales reales máximos de cada serie

Caudal max (T=30): Son los caudales máximos probables para un periodo de retorno de 30 años Caudal max (T=50): Son los caudales máximos probables para un periodo de retorno de 50 años

Luego, se puede deducir de la tabla N°36 que la estación Río Maule en Forel, sobrepasa 54,6 veces el caudal máximo real, de la estación Río Purapel en Nirivilo, siendo esta última estación la que presenta los valores de caudales máximos más reducidos entre las estaciones, lo cual se hará permanente en el tiempo, tanto para 30 y 50 años, llegando a sobrepasar 69,1 veces los caudales máximos probables, en un periodo de retorno de 50 años.

Sin embargo, la estación Río Loncomilla en las Brisas, solo es sobrepasada 2,3 veces, por la estación Río Maule en Forel, tanto en sus valores de caudales máximos reales empíricos, como en sus valores probables para un periodo de retorno de 30 años, llegando sólo a ser sobrepasada 2,4 veces en 50 años.

7.6 Comportamiento en el tiempo para caudales máximos

De manera de comprender el comportamiento en el tiempo de los caudales máximos, se seleccionaron cinco series que presentan los máximos valores reales empíricos de caudales máximos. A continuación se pueden observar en forma gráfica.

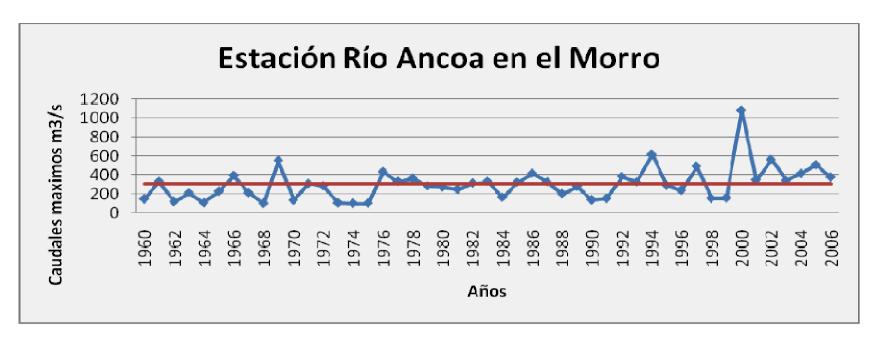


Figura N°9: Caudales máximos, estación Río Ancoa en el Morro

Se puede observar que los caudales máximos presentan valores muy cercanos a la media, escapándose abruptamente en el año 2000, año en el cual se presenta el valor más alto; desde el año 2000 hacia adelante, los caudales máximos en la estación Río Ancoa en el Morro, no han presentado valores inferiores a la media.

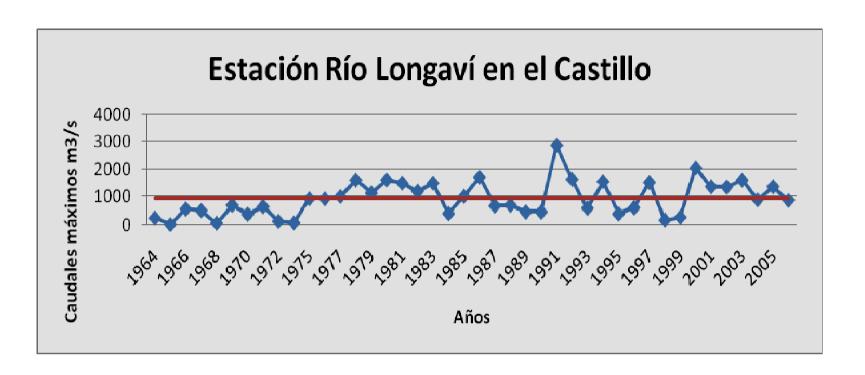


Figura $N^{\circ}10$: Caudales máximos, estación Río Longaví en el Castillo

En la presente estación se puede ver que entre los años 1964 y 1974, los caudales máximos no superaron la media, presentando los valores mas bajos del periodo, sin embargo, entre los años 1977 y1983, los valores superaron la media, bajándolos en el año 1984. En el año 1991, se presentó el valor más alto, llegando a los 2.878 m³/s. En los últimos 6 años los caudales máximos superaron la media, bajando levemente en los años 2004 y 2006.

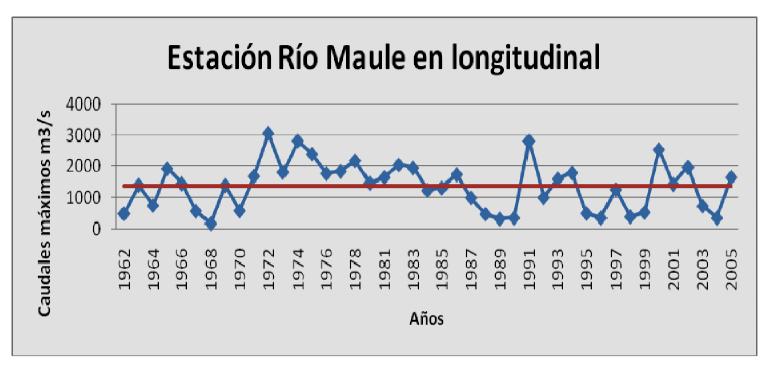


Figura N°11: Caudales máximos, estación Río Maule en Longitudinal

Los caudales máximos en la estación Rió Maule en Longitudinal, presentan una alta variabilidad. El valor más bajo se presentó en el año 1968, año que fue marcado por una fuerte sequía a nivel nacional. Entre los años 1971 y 1983, los caudales máximos superaron la media, encontrándose entre esos años el valor más alto del periodo, bajando nuevamente de manera abrupta en el año 1987. Desde 1994 hasta 1999 los caudales presentaron valores bajo la media, aumentando sus valores en el año 2000, siendo este año el que presentó el caudal más alto en la última década.

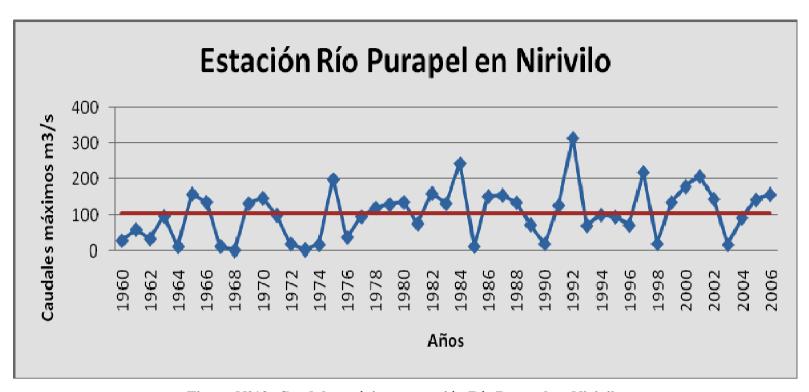


Figura N°12: Caudales máximos, estación Río Purapel en Nirivilo

En la presente estación, se puede apreciar una gran cantidad de valores pequeños de caudales máximos, siendo en su mayoría inferiores a la media. El caudal máximo más alto se presenta en el año 1992, sin embargo disminuye al siguiente año con un valor inferior al de la media. El caudal mas bajo se presento en el año 1968, coincidiendo con las estaciones anteriores.

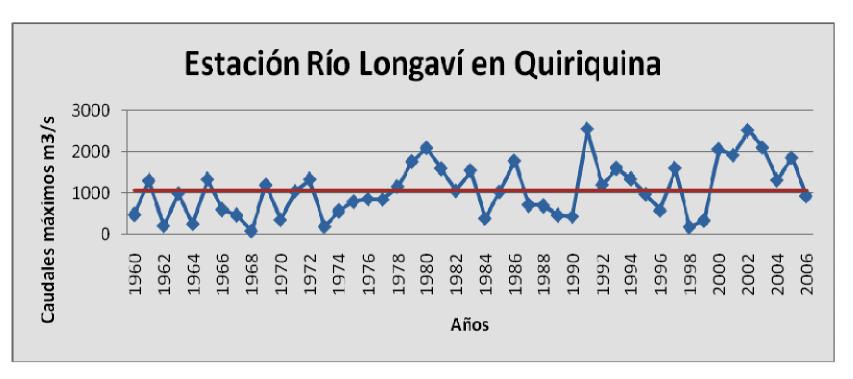


Figura N°13: Caudales máximos, estación Río Longaví en Quiriquína

En la figura superior se puede observar que entre los años 1969 y 1978, los caudales máximos presentaron los valores más bajos del periodo; en esas 2 décadas se encuentra el valor más pequeño de la serie que fue en el año 1968. Sin embargo entre los años 2000-2005, los caudales superaron la media, presentando los valores más altos de la serie.

7.7 Análisis comparativo de los resultados entre funciones de distribución de probabilidad

Debido a la alta sobrestimación que presentan los datos de caudales máximos probables, calculados a partir de la distribución Log-Normal, se procedió a graficar, en la estación Río Mataquito en Licantén, los valores entregados por las cuatro funciones en estudio, ya que esta estación presentó valores cuatro veces superiores para la distribución Log-Normal, en comparación con Gumbel, Goodrich y Pearson.

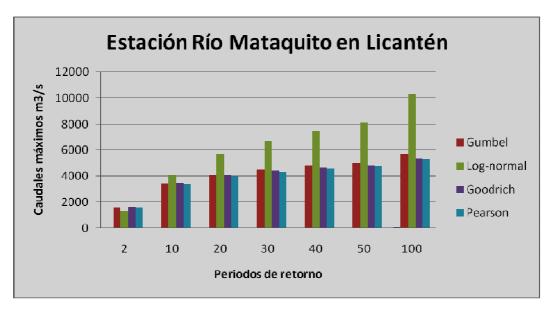


Figura $N^{\circ}13$: Caudales máximos probables, para periodos de retorno con las funciones estudiadas.

Se puede ver en el gráfico superior, y para los periodos de retornos estudiados, que a medida que va aumentando la probabilidad, el valor de los caudales máximos entregados por la distribución Log-Normal, va aumentando cada vez más y diferenciándose del valor que entregan las demás funciones.

Para estimar valores de caudales máximos probables, siempre se utilizan altas probabilidades, ya que generalmente las obras hidráulicas, requieren tener periodos de retornos altos, superiores a 10 años; por lo tanto, la probabilidad con la cual se trabaja, es

sobre 0,9, por lo que se puede concluir que, la función Log-Normal, no es adecuada para estimar valores extremos.

7.8 Calidad de los Ajustes

De acuerdo al test de bondad de ajuste de Kolmogorov-Smirnov, la función de Gumbel es altamente confiable en su utilización para series anuales de caudales máximos, presentando una aceptación del 100%. Para el coeficiente de determinación R², alcanzó una bondad promedio de un 96,4%, para las estaciones en estudios.

Por lo tanto, se puede determinar que la función de Gumbel es la más adecuada para el ajuste de los caudales máximos, ya que presenta una alta calidad en ambas pruebas de bondad de ajuste, con una diferencia poco significativa en el coeficiente de determinación con respecto a Goodrich, que presentó un coeficiente de determinación promedio más alto (ver tabla N°37), aunque no pudo ajustar a los datos de la estación Río Claro en Los Queñes.

Con respecto al porcentaje de aceptación en el test de Kolmogorov-Smirnov, se puede observar que la función de distribución Log-Normal presenta una aceptabilidad del 100%; sin embargo, su coeficiente de determinación es el más bajo entre los cuatro modelos estudiados, y además al momento de calcular los valores probables de caudales máximos para distintos periodos de retorno, se pudo observar la existencia de una sobre estimación que presentó esta función para los valores de probabilidad sobre 0,9.

Si bien, Goodrich se presenta como una alternativa altamente confiable con respecto a Gumbel, fallando sólo en la estación Río Claro en Los Queñes, en la cual no se pudo ajustar, esta función requiere un cálculo más engorroso y lento.

Con respecto a la distribución Pearson Tipo III, se puede observar en la tabla N°37, que el valor promedio en el coeficiente de determinación, es de 94,1%, sin embargo, el porcentaje de aceptación que presenta es del 82,1%, considerado como bajo, por lo tanto, esta función no se considera recomendable para ajustar caudales máximos.

Tabla $N^{\circ}37$: Bondad promedio del R^{2} , para el conjunto de estaciones.

Función	Promedio R ²
Goodrich	97,2%
Gumbel	96,4%
Pearson Tipo III	94,9%
Log-Normal	94,1%

Tabla $N^{\circ}38$: Porcentaje de aceptación por K-S, para el conjunto de estaciones.

Función	% aceptación por K-S
Gumbel	100%
Log-Normal	100%
Goodrich	96,4%
Pearson Tipo III	82,1%

8. CONCLUSIONES Y RECOMENDACIONES

8.1 Conclusiones

A continuación se presentan las principales conclusiones:

- La función de distribución de probabilidad Pearson Tipo III, presenta la calidad más baja de los ajustes en las estaciones, pudiendo concluirse que esta función no es la recomendable, para estimar el comportamiento de los caudales máximos en la Región del Maule.
- Las estaciones río Loncomilla en Bodega, río Longaví en Quiriquína y río Perquilauquén en San Manuel, debido a sus altos valores de los datos, no se pudieron ajustar a la función de Pearson Tipo III, ya que se salen del rango de flexibilidad de la función.
- El ajuste de los caudales máximos en la estación río Claro en Los Queñes, presenta dificultades importantes entre los años 1998 y 2006, no ajustando a la función de Goodrich, debido a la marcada presencia de "outliers" o valores anómalos.
- La estación Río Melado en el Salto, a pesar de haber sido aumentada la serie, seleccionando dos caudales máximos por cada año para generar una serie mas consistente, entregó ajustes muy deficientes, por lo tanto, es aconsejable no considerar esta estación como válida hasta que no se incremente aun número mínimo de 20 años.
- En la obtención de los valores de caudales máximos para distintos periodos de retorno, se presentó una variabilidad entre modelos, siendo la función Log-Normal la que presenta datos más variables, sobre estimándolos en algunas estaciones de manera significativa; seguido por la función Pearson Tipo III, la cual en algunas estaciones, entrega valores un poco más cercanos a los valores de Gumbel y Goodrich, que entregan valores de caudales punta más similares.

- Se concluye que las funciones de Gumbel y Goodrich, son las que presentan mayor flexibilidad para su aplicación a caudales máximos, en la región del Maule, aunque ello debe siempre quedar refrendado por las medidas de bondad de ajuste.
- En general, la función de distribución de probabilidad de Gumbel, es la más apropiada para ajustarse a caudales punta y obtener valores probables de esa variable, en distintos periodos de retorno; además, es recomendable su uso por su rapidez y facilidad de cálculo.

8.2 Recomendaciones

Las recomendaciones que pueden hacerse para el presente estudio y para futuras investigaciones son:

- Se recomienda ampliar el estudio para otras variables, como la evaporación, la
 capacidad de infiltración, la evapotranspiración y la intercepción, para tener un
 conocimiento más acabado del comportamiento probabilístico de las variables
 hidrológicas en general.
- Se sugiere ajustar la serie de datos de caudales punta, a una mayor gama de funciones de distribución de probabilidad, para así determinar otra función que pudiese ajustar de mejor forma a los datos.
- Se sugiere repetir el estudio en los próximos 8 años, para ampliar las series de datos y tener una mayor base de información que permita determinar en la forma más fidedigna el comportamiento de los caudales punta.
- Se recomienda utilizar series de datos superiores a 20 años, para no sobreestimar el caudal de diseño y obtener un análisis de frecuencia más preciso.
- Finalmente, sería recomendable, realizar el presente estudio para todas las regiones de Chile, abarcando todas las estaciones fluviométricas que pertenezcan a cada región, con el fin de poder contar con una herramienta de uso eficiente en la gestión de recursos hídricos.

9. BIBLIOGRAFÍA

Aparicio, F. 1997. Fundamentos de Hidrología de Superficie. 11 ed. México. Editorial Limusa S.A. 303 p.

Araya, S. 2003. Análisis de la Variación Temporal de los Caudales Punta Instantáneos en la Cuenca del Río Purapel, VII Región. Tesis de Ing. Forestal. Talca, Chile. Universidad de Talca, Facultad de Ciencias Forestales. 102 p.

Ashakar, F.; T.B.M.J Ouarda, R. Roy and B. Bobée. (1993). Robust estimators in hydrologic frequency analysis, in Engineering Hydrology. Edited by C.Y, pp 347-352, Am. Soc. Civ. Eng.

Bedient, P.; Huber, W. 1992. Hydrology and Floodplain Analysis. 2 ed. United States. Edited by Addison-Wesley publishing company. 692 p.

Canavos, G. 1988. Probabilidad y Estadística: Aplicaciones y Métodos. Editorial McGraw-Hill Interamericana de México S.A. 651 P.

Chow, V.; Maidment, D.; Mays, L. 1994. Hidrología Aplicada. Colombia. Editorial McGraw-Hill Interamericana S.A. 584 p.

CONAF-CONAMA, 1999, Catastro y evaluación de recursos vegetacionales nativos de Chile. Informe regional de la séptima región. Santiago, Chile. 116 p.

CONAMA. 2007. Disponible en http://www.conama.cl/portal/1255/channel.html. Consultada el 20 de Marzo de 2007 (en línea).

DMC. DIRECCIÓN METEREOLÓGICA DE CHILE. Disponible en http://www.meteochile.cl. Consultada el 15 de Abril de 2007 (en línea).

Fernández, F. 1995. Manual de climatología aplicada: Clima, medio ambiente y planificación. Madrid, España. 285 p.

Kite, G. 1988. Frequency and Risk Analysis in Hydrology: Water Resources Publications. Littleton, Colorado. EEUU. 257 P.

Kroll, C.; Vogel, R. 2002. Probability Distribution of low Streamflow Series in the United States. Journal of Hydrology Engineering. March/April. 137-146 p.

Linsley, R.; Kohler, M.; Paulus, J. 1988. Hidrología para ingenieros. 2 ed. México. Editorial McGraw-Hill Interamericana S.A. 386 p.

Llamas, J. 1993. Hidrología general. Servicio editorial del País Vasco. España. 635 p.

MOP, DGA, CHILE. 1998. Balance Hídrico de Chile-1987. Dirección General de Aguas, Ministerio de Obras Públicas. Santiago. Chile. 50 p.

Muñoz, M. 2004. Análisis de algunas variables hidrológicas y su ajuste a funciones de distribución de probabilidad, en tres cuencas de la Región del Maule. Tesis de Ing. Forestal. Talca, Chile. Universidad de Talca, Facultad de Ciencias Forestales. 86 p.

Nania, L. 2003. Estadística aplicada a la hidrología. Granada. Universidad de Granada. España. 29 p.

Pizarro, R.; Novoa, P. 1986. Elementos técnicos de Hidrología I. Instructivos técnicos. La Serena, Chile. Corporación Nacional Forestal, Ministerio de Agricultura. 57 p.

Pizarro, R.; Hernandez, I.; Muñoz, J. Torres, H. 1988. Elementos técnicos de Hidrología III. Universidad de Talca, UNESCO-ORCYT. Editorial Universidad de Talca, Chile. 136 p.

Pizarro, R. 1996. Análisis comparativo de modelos matemáticos precipitación-escorrentía en cuencas de la España peninsular. Tesis Doctoral. Departamento de Ingeniería Forestal. Escuela técnica superior de Ingenieros de Montes. Universidad Politécnica de Madrid. Madrid, España. 320 p.

Pizarro, R.; González, P.; Wittersheim, M.; Saavedra, J.; Soto, C. 1993. Elementos técnicos de Hidrología III. Proyecto regional sobre el uso y conservación del recurso hídrico en áreas de América Latina y el Caribe. UNESCO. Chile. Editorial Universidad de Talca. 136 p.

Pizarro, R.; Sangüesa, C. 2002. Estudios Hidrológicos en la Región del Maule. Universidad de Talca, UNESCO-ORCYT. Editorial Universidad de Talca, Chile 195 p.

Poblete, A.G.; Aguiar, L., Sánchez, G. 2002. Estructuras estadísticas de los derrames del río San Juan y el Jáchal y sus relaciones. Revista geográfica N°6 del Instituto y Departamento de Geografía de la Universidad Nacional de San Juan. Argentina.

Önöz, B. and Bayazit, M. 1999. GEV-PWM model for distribution of minimum flows, J. Hydrologic Eng., 4-3. 289-292 p.

UNESCO, ROSTLAC. 1982. Guía metodológica para la elaboración del balance hídrico de América del Sur. Oficina Regional de Ciencia y Tecnología de la UNESCO para América Latina y El Caribe. Montevideo. Uruguay. 130 p.

Varas, E.; Bois, P. 1998. Hidrología probabilística. Santiago. Editorial Universidad Católica de Chile. 156 p.

Vogel, R.; and Kroll, C. 1989. Low-flow frequency analysis using probability-plot correlation coefficients, J. Water Resour. Plan. Manage.,115 (3). 338-357 p.

APÉNDICES

APENDICE 1

Tabla N°39: Series de caudales máximos anuales, periodo 1960-2006.

		_				ESTACION	NES				
AÑOS	Ancoa	Nirivilo	Quiriquina	Jta con Claro	San Manuel	Las Rastras	Quella	Jta Colorado	El Castillo	Camarico	Longitudinal
1960	145,74	29	489,8	124,7	584,4						
1961	330,16	60,48	1305	485,6	402,2	2,15					
1962	118,4	33,8	219,4	206,14	217,4	119,6					500,4
1963	210,56	97,12	990	429,84	465	253	939,6			313,32	1416
1964	105,92	12,22	261	200,48	207,8	107,6	366		262	126,72	762,6
1965	224,2	159	1336	492,4	580,8	372,8	1015,8		31,7	611,1	1935,6
1966	394,18	137	606	314	444,6	270,6	760		578	339,52	1462
1967	209,38	12,9	474,6	160	489,2	83,9	456	51,96	526	458,22	582,4
1968	99,2	1,92	90,18	50,6	121,6	16,62	71	27,54	82,5	132,16	187,2
1969	553,68	133	1197,6	712,5	885,2	453,8	1645,8	152,8	715	292,52	1410
1970	131,52	148	363	102,8	454,8	203,2	872,6	48,1	393	620,7	589,6
1971	305,68	100	1044	442,02	639,3	309,4	979	199	665	243,64	1696
1972	284,2	19,6	1336	471,66	624,48	581,2	2102,6	281	146	561,88	3064
1973	104,13	4,29	198,4	562,28	99,88	-	755	302,18	92,3	180,64	1826
1974	101,11	17,82	573	238,4	517	106,5	1010,6	213,36	946,5	127,36	2828
1975	102,02	199,2	791,8	163,1	1030,4	99,76	2319,6	243,24	942,5	468,8	2412
1976	432,48	38,83	855,2	346,06	651,8	16,47	718,4	254,96	1024	407,26	1780,2

					ES	STACIONE	S				
AÑOS	Ancoa	Nirivilo	Quiriquina	Jta con Claro	San Manuel	Las Rastras	Quella	Jta Colorado	El Castillo	Camarico	Longitudinal
1978	362,68	119,76	1162,8	712,92	635,28	428,26	707,6	410	1149,4	865,04	2195,5
1979	283,2	130,3	1752	639,84	951,9	343,38	1745,32	395	1612,6	410,38	1480
1980	269,6	136,8	2089,4	714,28	902,22	470,43	1730,56	466	1504,8	638,4	1658
1981	246	76,82	1587,2	314,84	696	289,22	794,4	275	1208	282,4	2058
1982	310,8	161	1054,8	545,8	579,52	425,29	1638,6	295	1502	599	1960
1983	330,6	133	1540,8	200,8	866,8	247	1915,4	88,12	420	284,6	1248
1984	163,2	245	398,4	416,8	354,4	342,72	1376,4	127,4	1030	1723,8	1329,2
1985	319,6	12,4	1027,8	238	709,2	353,64	963	125	1713	471,9	1750
1986	417,4	153	1773,2	943	775,2	698,8	1585,6	63,62	684,5	244,74	1014,14
1987	324,4	155,64	713,78	203,4	502	465,04	1151,56	264,68	713	419	482,8
1988	200,12	135,7	696,3	266,86	507,46	222,36	798,96	83,45	477,08	61,38	330,6
1989	276	73,4	471,56	502,16	435,6	298,29	470,28	144,36	474,8	860,4	361,32
1990	135,24	19,6	445,12	149,4	346,8	75,34	344,04	58,75	2877,9	835,46	2823,69
1991	151,28	127,7	2534,9	672,42	948,28	397,16	1953,9	447,86	1635,7	455,56	1020,59
1992	383,94	315,22	1204,56	429,82	796,76	458,05	1420,92	247,1	606,8	744,72	1607,56
1993	323,7	71,33	1596,72	525	857,44	287,33	1802,66	358,36	1558,7	257,34	1801,49
1994	617,18	100,63	1343,44	460,44	888,26	150,55	1756,6	375,41	406,8	198,4	506,28
1995	289,65	95,47	972,18	334,4	635,6	291,75	784,78	224,51	624	566,48	362,44
1996	235,4	72,79	582,6	154,76	465,64	188,1	373,06	140,52	1526,5	56	1276,4

			I	I	ES	TACIONES	S	1	1	1	
AÑOS	Ancoa	Nirivilo	Quiriquina	Jta con Claro	San Manuel	Las Rastras	Quella	Jta Colorado	El Castillo	Camarico	Longitudinal
1998	152,5	19,83	189,2	164,38	92,53	72,19	130,36	90,51	293,34	1108,2	538,97
1999	156,52	136,27	347,36	190,73	348,69	181,46	766,08	82,38	2054,88	883,88	2557,42
2000	1080,89	179,82	2056	1155,88	1244,94	850	1089,56	597,4	1378,11	659,72	1439,8
2001	347,18	208,42	1910	862,66	1124,59	721	2029,9	371,33	1366,11	78,75	1979,92
2002	560,35	145,78	2502,67	915,78	391,31	263,15	2111,32	271,6	1607,77	444,26	744,16
2003	340,66	17,37	2097,7	724,62	802,22	271,7	814,47	310,03	909,82	811,45	359,48
2004	413,29	92,04	1317,73	787,8	670,73	365,66	483,44	518,57	1377,7	292,46	1661,76
2005	505,87	143,56	1845,11	758,93	796,77	454,92	617,83	398,25	884,89		
2006	375,99	157,93	925,18	531,33	674,68	282,94		267,09			

Tabla N°40: Series de caudales máximos anuales, periodo 1975-2006.

						ESTAC	CIONES						
AÑOS	Jta con palos	Las Brisas	La Recova	C.Desembocadura	Los Queñes	El Arrayán	Bodega	Forel	Licantén	L. Desembocadura	Ñiquen	Y.Buenas	Infiernillo
1975	270,0												
1976	134,8												
1977	328,8												
1978	371,9												
1979	387,2												
1980	391,4												
1981	271,8												
1982	299,0												
1983	153,2	919,0											
1984	216,8	2851,6											
1985	195,2	3021,6					1560,6						78,8
1986	129,6	4892,6		834,4	528,0		3940,0						94,2
1987	352,1	5006,8	754,8	737,9	162,4	721,6	2221,2		4638,3	796,8	574,2	553,4	29,5
1988	152,4	2933,2	396,8	246,9	131,6	588,5	1987,6	1223,0	663,2	581,2	614,2	414,2	358,8
1989	206,6	2046,8	591,8	151,6	298,1	304,0	1134,5	401,4	1360,7	132,3	405,4	315,8	146,8
1990	106,7	1340,3	370,5	46,8	72,2	70,8	664,8	310,9	334,0	61,4	349,7	204,6	194,3
1991	501,3	6464,0	2621,2	259,4	397,8	257,7	3616,1	1135,8	1797,2	360,1	1044,8	557,5	146,0
1992	518,7	5639,3	1502,3	681,1	315,0	635,8	4000,3	223,0	1666,7	854,9	1040,4	824,6	211,1
1993	498,7	4641,4	1061,0	272,5	336,5	256,3	2913,1	356,9	1241,2	70,6	1076,0	210,5	58,9
1994	407,4	5558,9	1760,0	290,4	138,6	309,0	2705,3	9179,9	1502,5	26,1	1113,5	557,0	121,0

		ESTACIONES											
AÑOS	Jta con palos	Las Brisas	La Recoba	C.Desembocadura	Los Queñes	El Arrayán	Bodega	Forel	Licantén	L. Desembocadura	Ñiquen	Y.Buenas	Infiernillo
1996	258,1	1297,2	636,2	91,1	111,9	116,9	681,8	4173,3	154,3	45,1	422,8	110,5	98,9
1997	416,4	5566,8	1400,6	599,0	381,0	509,1	3071,2	17212,9	2526,2	490,9	964,4	555,5	246,2
1998	169,0	570,4	293,5	13,8	68,7	11,2	154,7	10780,8	236,0	25,1	109,4	52,8	238,5
1999	165,2	3104,2	390,3	431,5	96,7	398,8	1938,3	16665,6	1200,6	254,4	533,0	410,6	218,8
2000	689,6	7623,4	1641,1	794,2	499,8	1032,1	4227,8	3652,8	4195,5	475,6	1378,6	470,4	239,3
2001	465,0	3920,0	1394,6	666,3	419,2	673,4	3285,0	3334,3	3343,5	649,5	1302,3	429,5	288,0
2002	639,6	3341,8	1834,3	922,4	329,1	926,6	1971,6	8673,1	3206,8	152,3	1109,6	270,3	204,3
2003	518,6	2981,0	1313,2	77,1	270,8	75,5	1150,0	5707,6	1177,6	30,7	116,0	154,1	187,5
2004	625,2	2341,4	976,1	226,4	285,5	264,0	999,0		1482,9	320,6	587,5	181,5	
2005	480,7	5140,2	1323,6	184,8	304,1	845,0	3205,0		2394,9	592,6	1031,8	297,2	
2006	316,2		755,6	204,0	188,9	264,0	2377,0		1620,2	3,1	882,2	246,4	

Tabla N°41: Series de caudales máximos anuales, periodo 1999-2006

, vica	E	STACION	IES
AÑOS	Sauzal	Rauquen	El Salto
1999	0,18	1460,8	972,04
2000	246,5	1962,2	940,08
2001	293,86	2100,1	950,27
2002	203,25	1755,3	875,42
2003	42,4	690,78	
2004	125,9	961,66	
2005	321,15	1674,6	
2006		1254,3	

APENDICE 2

2.1 Frecuencias observadas y teóricas acumuladas para las funciones de distribución de probabilidad

TablaN°39: Frecuencias observadas y teóricas acumuladas, estación Río Achibueno en la Recova

n	Años	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
1	1987	754,84	293,5	0,047619	0,0469	0,0304	0,0734	0,0788
2	1988	396,8	370,48	0,095238	0,0743	0,0673	0,1053	0,1077
3	1989	591,8	390,28	0,142857	0,0826	0,0791	0,1144	0,1161
4	1990	370,48	396,8	0,190476	0,0855	0,0831	0,1174	0,1189
5	1991	2621,24	591,8	0,238095	0,1964	0,2314	0,2215	0,2197
6	1992	1502,34	636,24	0,285714	0,2273	0,2688	0,2481	0,2465
7	1993	1061	754,84	0,333333	0,3158	0,3675	0,3225	0,3229
8	1994	1759,98	755,62	0,380952	0,3164	0,3681	0,3230	0,3234
9	1995	874,62	874,62	0,428571	0,4088	0,4605	0,4004	0,4044
10	1996	636,24	976,05	0,476190	0,4860	0,5316	0,4665	0,4740
11	1997	1400,6	1061	0,523810	0,5472	0,5851	0,5208	0,5311
12	1998	293,5	1313,24	0,571429	0,7023	0,7129	0,6689	0,6847
13	1999	390,28	1323,56	0,619048	0,7076	0,7172	0,6744	0,6903
14	2000	1641,1	1394,6	0,666667	0,7426	0,7453	0,7109	0,7272
15	2001	1394,6	1400,6	0,714286	0,7454	0,7475	0,7139	0,7301
16	2002	1834,25	1502,34	0,761905	0,7891	0,7825	0,7615	0,7774
17	2003	1313,24	1641,1	0,809524	0,8381	0,8223	0,8176	0,8319

n	Años	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
18	2004	976,05	1759,98	0,857143	0,8717	0,8504	0,8577	0,8699
19	2005	1323,56	1834,25	0,904762	0,8893	0,8655	0,8793	0,8900
20	2006	755,62	2621,24	0,952381	0,9781	0,9541	0,9860	0,9859

TablaN°40: Frecuencias observadas y teóricas acumuladas, estación Río Ancoa en el Morro

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
1	1960	145,74	99,2	0,020833	0,0981	0,0812	0,0007	0,0189
2	1961	330,16	101,11	0,041667	0,1012	0,0857	0,0061	0,0305
3	1962	118,4	102,02	0,062500	0,1027	0,0878	0,0090	0,0359
4	1963	210,56	104,13	0,083333	0,1062	0,0929	0,0159	0,0485
5	1964	105,92	105,92	0,104167	0,1093	0,0972	0,0221	0,0591
6	1965	224,2	118,4	0,125000	0,1318	0,1295	0,0677	0,1293
7	1966	394,18	131,52	0,145833	0,1577	0,1662	0,1172	0,1976
8	1967	209,38	135,24	0,166667	0,1654	0,1770	0,1312	0,2159

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
9	1968	99,2	145,74	0,187500	0,1882	0,2079	0,1705	0,2655
10	1969	553,68	151,28	0,208333	0,2007	0,2245	0,1909	0,2904
11	1970	131,52	152,5	0,229167	0,2035	0,2282	0,1953	0,2958
12	1971	305,68	156,52	0,250000	0,2128	0,2403	0,2099	0,3131
13	1972	284,2	163,2	0,270833	0,2285	0,2604	0,2339	0,3411
14	1973	104,13	200,12	0,291667	0,3209	0,3696	0,3578	0,4763
15	1974	101,11	209,38	0,312500	0,3449	0,3957	0,3864	0,5056
16	1975	102,02	210,56	0,333333	0,3479	0,3990	0,3900	0,5092
17	1976	432,48	224,2	0,354167	0,3834	0,4361	0,4301	0,5492
18	1977	330,38	235,4	0,375000	0,4125	0,4654	0,4615	0,5795
19	1978	362,68	246	0,395833	0,4398	0,4920	0,4898	0,6063
20	1979	283,2	269,6	0,416667	0,4990	0,5473	0,5484	0,6601
21	1980	269,6	276	0,437500	0,5146	0,5613	0,5633	0,6734

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
22	1981	246	283,2	0,458333	0,5319	0,5767	0,5795	0,6877
23	1982	310,8	284,2	0,479167	0,5342	0,5788	0,5817	0,6896
24	1983	330,6	289,65	0,500000	0,5470	0,5900	0,5935	0,6999
25	1984	163,2	305,68	0,520833	0,5836	0,6214	0,6267	0,7284
26	1985	319,6	310,8	0,541667	0,5949	0,6309	0,6368	0,7369
27	1986	417,4	319,6	0,562500	0,6139	0,6468	0,6535	0,7510
28	1987	324,4	323,7	0,583333	0,6225	0,6539	0,6611	0,7572
29	1988	200,12	324,4	0,604167	0,6239	0,6552	0,6624	0,7583
30	1989	276	330,16	0,625000	0,6358	0,6649	0,6727	0,7668
31	1990	135,24	330,38	0,645833	0,6363	0,6653	0,6731	0,7671
32	1991	151,28	330,6	0,666667	0,6367	0,6657	0,6735	0,7674
33	1992	383,94	340,66	0,687500	0,6568	0,6820	0,6908	0,7815
34	1993	323,7	347,18	0,708333	0,6693	0,6922	0,7016	0,7902
35	1994	617,18	362,68	0,729167	0,6978	0,7151	0,7259	0,8095
36	1995	289,65	375,99	0,750000	0,7208	0,7334	0,7452	0,8246

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
37	1996	235,4	383,94	0,770833	0,7338	0,7437	0,7562	0,8331
38	1997	490,62	394,18	0,791667	0,7499	0,7564	0,7697	0,8434
39	1998	152,5	413,29	0,812500	0,7777	0,7783	0,7930	0,8610
40	1999	156,52	417,4	0,833333	0,7833	0,7827	0,7977	0,8645
41	2000	1080,89	432,48	0,854167	0,8029	0,7982	0,8142	0,8766
42	2001	347,18	490,62	0,875000	0,8646	0,8476	0,8667	0,9140
43	2002	560,35	505,87	0,895833	0,8776	0,8583	0,8779	0,9218
44	2003	340,66	553,68	0,916667	0,9111	0,8868	0,9076	0,9419
45	2004	413,29	560,35	0,937500	0,9150	0,8902	0,9111	0,9443
46	2005	505,87	617,18	0,958333	0,9423	0,9153	0,9365	0,9609
47	2006	375,99	1080,89	0,979167	0,9978	0,9869	0,9964	0,9978

TablaN°41: Frecuencias observadas y teóricas acumuladas, estación Río Loncomilla en las Brisas

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
1	1983	919	570,4	0,041667	0,0098	0,0049	0,0421	0,0456
2	1984	2851,6	919	0,083333	0,0262	0,0319	0,0682	0,0696
3	1985	3021,6	1297,2	0,125000	0,0601	0,0924	0,1056	0,1049
4	1986	4892,6	1340,32	0,166667	0,0652	0,1009	0,1104	0,1096
5	1987	5006,8	2046,8	0,208333	0,1860	0,2648	0,2075	0,2061
6	1988	2933,24	2341,35	0,250000	0,2529	0,3362	0,2567	0,2568
7	1989	2046,8	2696,06	0,291667	0,3403	0,4180	0,3216	0,3245
8	1990	1340,32	2851,6	0,333333	0,3795	0,4518	0,3516	0,3560
9	1991	6464	2933,24	0,375000	0,4000	0,4689	0,3677	0,3728
10	1992	5639,3	2981	0,416667	0,4120	0,4787	0,3771	0,3828
11	1993	4641,42	3021,6	0,458333	0,4222	0,4870	0,3852	0,3913
12	1994	5558,94	3104,2	0,500000	0,4427	0,5034	0,4018	0,4087
13	1995	2696,06	3341,8	0,541667	0,5003	0,5483	0,4500	0,4594

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
14	1996	1297,2	3920	0,583333	0,6276	0,6427	0,5677	0,5820
15	1997	5566,78	4641,42	0,625000	0,7527	0,7337	0,7040	0,7202
16	1998	570,4	4892,6	0,666667	0,7873	0,7595	0,7463	0,7618
17	1999	3104,2	5006,8	0,708333	0,8016	0,7704	0,7644	0,7794
18	2000	7623,44	5140,2	0,750000	0,8172	0,7824	0,7846	0,7989
19	2001	3920	5558,94	0,791667	0,8594	0,8160	0,8413	0,8527
20	2002	3341,8	5566,78	0,833333	0,8601	0,8165	0,8422	0,8536
21	2003	2981	5639,3	0,875000	0,8664	0,8218	0,8509	0,8617
22	2004	2341,35	6464	0,916667	0,9218	0,8710	0,9278	0,9322
23	2005	5140,2	7623,44	0,958333	0,9639	0,9167	0,9802	0,9795

TablaN°42: Frecuencias observadas y teóricas acumuladas, estación Río Claro en Camarico

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
1	1963	313,32	56	0,023256	0,0641	0,0138	0,0003	0,0623
2	1964	126,72	61,38	0,046512	0,0679	0,0182	0,0047	0,0719
3	1965	611,1	78,75	0,069767	0,0809	0,0365	0,0254	0,1044
4	1966	339,52	126,72	0,093023	0,1242	0,1105	0,0983	0,2006
5	1969	458,22	127,36	0,116279	0,1248	0,1116	0,0994	0,2019
6	1970	132,16	132,16	0,139535	0,1297	0,1203	0,1072	0,2117
7	1971	292,52	155,55	0,162791	0,1550	0,1639	0,1463	0,2591
8	1972	620,7	180,64	0,186047	0,1844	0,2120	0,1886	0,3089
9	1973	243,64	198,4	0,209302	0,2064	0,2460	0,2186	0,3432
10	1974	561,88	215,06	0,232558	0,2279	0,2774	0,2465	0,3745
11	1975	180,64	243,64	0,255814	0,2663	0,3295	0,2937	0,4260
12	1976	127,36	244,74	0,279070	0,2679	0,3315	0,2955	0,4279
13	1977	468,8	257,34	0,302326	0,2853	0,3536	0,3158	0,4497
14	1978	407,26	282,4	0,325581	0,3206	0,3957	0,3555	0,4911
15	1979	215,06	284,6	0,348837	0,3237	0,3993	0,3589	0,4946
16	1980	865,04	292,46	0,372093	0,3349	0,4119	0,3711	0,5070
17	1981	410,38	292,52	0,395349	0,3350	0,4120	0,3712	0,5071
18	1982	638,4	313,32	0,418605	0,3647	0,4443	0,4026	0,5389

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
19	1983	282,4	339,52	0,441860	0,4022	0,4825	0,4409	0,5765
20	1984	599	407,26	0,465116	0,4968	0,5690	0,5321	0,6620
21	1985	284,6	410,38	0,488372	0,5010	0,5726	0,5360	0,6656
22	1986	1723,8	419	0,511628	0,5126	0,5823	0,5467	0,6752
23	1987	471,9	444,26	0,534884	0,5457	0,6095	0,5770	0,7021
24	1988	244,74	455,56	0,558140	0,5601	0,6210	0,5901	0,7134
25	1989	419	458,22	0,581395	0,5635	0,6236	0,5931	0,7161
26	1990	61,38	468,8	0,604651	0,5767	0,6339	0,6050	0,7262
27	1991	860,4	471,9	0,627907	0,5805	0,6369	0,6084	0,7292
28	1992	835,46	561,88	0,651163	0,6818	0,7120	0,6979	0,8026
29	1993	455,56	566,48	0,674419	0,6864	0,7153	0,7020	0,8058
30	1994	744,72	599	0,697674	0,7178	0,7375	0,7295	0,8271
31	1995	257,34	611,1	0,720930	0,7289	0,7453	0,7392	0,8345
32	1996	198,4	620,7	0,744186	0,7374	0,7512	0,7467	0,8401
33	1997	566,48	638,4	0,767442	0,7525	0,7618	0,7600	0,8500
34	1998	56	659,72	0,790698	0,7697	0,7738	0,7752	0,8611
35	1999	155,55	744,72	0,813953	0,8287	0,8150	0,8278	0,8983
36	2000	1108,2	811,45	0,837209	0,8651	0,8411	0,8611	0,9205
37	2001	883,88	835,46	0,860465	0,8763	0,8495	0,8716	0,9273
38	2002	659,72	860,4	0,883721	0,8871	0,8575	0,8818	0,9338

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
39	2003	78,75	865,04	0,906977	0,8890	0,8590	0,8836	0,9350
40	2004	444,26	883,88	0,930233	0,8964	0,8647	0,8907	0,9394
41	2005	811,45	1108,2	0,953488	0,9554	0,9150	0,9495	0,9741
42	2006	292,46	1723,8	0,976744	0,9959	0,9714	0,9950	0,9977

TablaN°43: Frecuencias observadas y teóricas acumuladas, estación Río Cauquenes en Desembocadura

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
1	1986	834,4	13,76	0,045455	0,0576	0,0031	0,0947	0,0890
2	1987	737,88	46,81	0,090909	0,0851	0,0556	0,1240	0,1151
3	1988	246,94	77,09	0,136364	0,1161	0,1303	0,1539	0,1427
4	1989	151,64	91,11	0,181818	0,1322	0,1665	0,1687	0,1566
5	1990	46,81	151,64	0,227273	0,2132	0,3120	0,2379	0,2241
6	1991	259,4	184,8	0,272727	0,2635	0,3803	0,2789	0,2656
7	1992	681,12	204	0,318182	0,2939	0,4161	0,3035	0,2908
8	1993	272,48	226,4	0,363636	0,3301	0,4545	0,3327	0,3210
9	1994	290,4	232,94	0,409091	0,3408	0,4651	0,3413	0,3300
10	1995	232,94	246,94	0,454545	0,3637	0,4869	0,3598	0,3494
11	1996	91,11	259,4	0,500000	0,3840	0,5053	0,3764	0,3668
12	1997	599,04	272,48	0,545455	0,4054	0,5237	0,3939	0,3853

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
13	1998	13,76	290,4	0,590909	0,4344	0,5475	0,4180	0,4107
14	1999	431,46	431,46	0,636364	0,6407	0,6882	0,6017	0,6058
15	2000	794,22	599,04	0,681818	0,8096	0,7877	0,7803	0,7900
16	2001	666,3	666,3	0,727273	0,8551	0,8155	0,8347	0,8437
17	2002	922,4	681,12	0,772727	0,8636	0,8209	0,8453	0,8540
18	2003	77,09	737,88	0,818182	0,8924	0,8399	0,8814	0,8887
19	2004	226,4	794,22	0,863636	0,9152	0,8561	0,9107	0,9162
20	2005	184,8	834,4	0,909091	0,9286	0,8664	0,9278	0,9321
21	2006	204	922,4	0,954545	0,9511	0,8856	0,9563	0,9583

TablaN°44: Frecuencias observadas y teóricas acumuladas, estación Río Colorado en junta con Palos

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
1	1975	270	106,68	0,030303	0,0254	0,0212	0,0602	0,0614
2	1976	134,84	129,6	0,060606	0,0469	0,0492	0,0871	0,0855
3	1977	328,84	134,84	0,090909	0,0531	0,0575	0,0941	0,0918
4	1978	371,88	152,4	0,121212	0,0779	0,0903	0,1192	0,1151
5	1979	387,2	153,2	0,151515	0,0792	0,0920	0,1204	0,1162
6	1980	391,4	165,19	0,181818	0,0998	0,1185	0,1394	0,1342
7	1981	271,82	169	0,212121	0,1069	0,1275	0,1457	0,1402

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
8	1982	299	195,2	0,242424	0,1629	0,1952	0,1926	0,1859
9	1983	153,2	206,64	0,272727	0,1908	0,2271	0,2148	0,2081
10	1984	216,8	216,8	0,303030	0,2170	0,2562	0,2354	0,2288
11	1985	195,2	258,05	0,333333	0,3329	0,3755	0,3253	0,3214
12	1986	129,6	270	0,363636	0,3678	0,4092	0,3528	0,3502
13	1987	352,1	271,82	0,393939	0,3732	0,4143	0,3570	0,3546
14	1988	152,4	299	0,424242	0,4521	0,4873	0,4212	0,4221
15	1989	206,64	316,24	0,454545	0,5006	0,5307	0,4623	0,4655
16	1990	106,68	322,02	0,484848	0,5164	0,5446	0,4761	0,4801
17	1991	501,32	328,84	0,515152	0,5348	0,5607	0,4923	0,4971
18	1992	518,74	352,1	0,545455	0,5945	0,6123	0,5470	0,5546
19	1993	498,66	371,88	0,575758	0,6413	0,6522	0,5923	0,6019
20	1994	407,4	387,2	0,606061	0,6749	0,6807	0,6263	0,6371
21	1995	322,02	391,4	0,636364	0,6837	0,6881	0,6354	0,6465
22	1996	258,05	407,4	0,666667	0,7155	0,7151	0,6692	0,6811
23	1997	416,4	416,4	0,696970	0,7323	0,7293	0,6876	0,6998
24	1998	169	465	0,727273	0,8093	0,7952	0,7774	0,7895
25	1999	165,19	480,68	0,757576	0,8297	0,8130	0,8027	0,8142

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
26	2000	689,64	498,66	0,787879	0,8506	0,8315	0,8294	0,8399
27	2001	465	501,32	0,818182	0,8535	0,8341	0,8331	0,8434
28	2002	639,6	518,6	0,848485	0,8711	0,8500	0,8560	0,8652
29	2003	518,6	518,74	0,878788	0,8712	0,8501	0,8562	0,8654
30	2004	625,2	625,2	0,909091	0,9427	0,9191	0,9506	0,9526
31	2005	480,68	639,6	0,939394	0,9487	0,9255	0,9581	0,9595
32	2006	316,24	689,64	0,969697	0,9653	0,9440	0,9775	0,9771

TablaN°45: Frecuencias observadas y teóricas acumuladas, estación Río Claro en los Queñes

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
1	1986	527,98	68,65	0,045455	0,0330	0,0282	-	0,0754
2	1987	162,4	72,23	0,090909	0,0369	0,0340	-	0,0796
3	1988	131,6	96,67	0,136364	0,0722	0,0878	-	0,1132
4	1989	298,14	111,9	0,181818	0,1022	0,1318	-	0,1383
5	1990	72,23	131,6	0,227273	0,1498	0,1960	-	0,1755
6	1991	397,84	138,6	0,272727	0,1688	0,2200	-	0,1900
7	1992	314,96	162,4	0,318182	0,2404	0,3029	-	0,2441
8	1993	336,52	175,56	0,363636	0,2834	0,3482	-	0,2768
9	1994	138,6	188,87	0,409091	0,3283	0,3928	-	0,3117

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
10	1995	175,56	270,76	0,454545	0,5947	0,6218	-	0,5455
11	1996	111,9	285,52	0,500000	0,6358	0,6539	-	0,5872
12	1997	380,96	298,14	0,545455	0,6685	0,6793	-	0,6219
13	1998	68,65	304,11	0,590909	0,6832	0,6907	-	0,6379
14	1999	96,67	314,96	0,636364	0,7087	0,7104	-	0,6663
15	2000	499,8	329,12	0,681818	0,7395	0,7342	-	0,7016
16	2001	419,24	336,52	0,727273	0,7545	0,7459	-	0,7193
17	2002	329,12	380,96	0,772727	0,8301	0,8056	-	0,8124
18	2003	270,76	397,84	0,818182	0,8529	0,8243	-	0,8417
19	2004	285,52	419,24	0,863636	0,8777	0,8454	-	0,8739
20	2005	304,11	499,8	0,909091	0,9403	0,9033	-	0,9528
21	2006	188,87	527,98	0,954545	0,9537	0,9177	-	0,9681

TablaN°46: Frecuencias observadas y teóricas acumuladas, estación Río Maule en Armerillo

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
1	1960	701,8	180,5	0,038462	0,0085	0,0047	0,0556	0,0433
2	1961	2143,88	336,6	0,076923	0,0276	0,0437	0,0827	0,0711
3	1962	457,96	437,04	0,115385	0,0503	0,0904	0,1046	0,0947
4	1963	898,76	457,96	0,153846	0,0562	0,1017	0,1096	0,1003

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
5	1964	731,36	594,5	0,192308	0,1059	0,1836	0,1467	0,1420
6	1965	1840,92	624	0,230769	0,1191	0,2025	0,1557	0,1523
7	1966	1111,32	701,8	0,269231	0,1577	0,2527	0,1811	0,1817
8	1967	624	731,36	0,307692	0,1737	0,2718	0,1914	0,1936
9	1968	180,5	898,76	0,346154	0,2750	0,3765	0,2567	0,2691
10	1969	1941,44	973,4	0,384615	0,3239	0,4202	0,2893	0,3065
11	1970	594,5	1111,32	0,423077	0,4160	0,4947	0,3550	0,3803
12	1971	1626,02	1273,52	0,461538	0,5204	0,5715	0,4393	0,4715
13	1972	2133,06	1626,02	0,500000	0,7089	0,7010	0,6329	0,6643
14	1973	2013,24	1630,8	0,538462	0,7111	0,7025	0,6355	0,6667
15	1974	1273,52	1779,36	0,576923	0,7709	0,7439	0,7130	0,7374
16	1975	973,4	1809,6	0,615385	0,7817	0,7515	0,7280	0,7507
17	1976	1630,8	1840,92	0,653846	0,7924	0,7592	0,7432	0,7640
18	1977	1809,6	1917,2	0,692308	0,8166	0,7767	0,7786	0,7947
19	1978	437,04	1941,44	0,730769	0,8238	0,7820	0,7893	0,8039
20	2001	336,6	2013,24	0,769231	0,8436	0,7969	0,8194	0,8295
21	2002	2305,21	2133,06	0,807692	0,8722	0,8193	0,8641	0,8670
22	2003	2174,68	2143,88	0,846154	0,8745	0,8212	0,8678	0,8701
23	2004	1917,2	2174,68	0,884615	0,8809	0,8264	0,8779	0,8785
24	2005	2279,35	2279,35	0,923077	0,9005	0,8430	0,9085	0,9042
25	2006	1779,36	2305,21	0,961538	0,9048	0,8468	0,9152	0,9099

TablaN°47: Frecuencias observadas y teóricas acumuladas, estación Río Cauquenes en el Arrayán

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
1	1987	721,6	11,19	0,047619	0,0406	0,0015	0,0732	0,0900
2	1988	588,5	70,8	0,095238	0,0830	0,0994	0,1202	0,1381
3	1989	303,96	75,5	0,142857	0,0872	0,1101	0,1244	0,1424
4	1990	70,8	116,86	0,190476	0,1291	0,2042	0,1636	0,1835
5	1991	257,72	176,16	0,238095	0,2036	0,3260	0,2272	0,2511
6	1992	635,8	256,28	0,285714	0,3220	0,4569	0,3232	0,3545
7	1993	256,28	257,72	0,333333	0,3243	0,4590	0,3250	0,3565
8	1994	309	264	0,380952	0,3340	0,4677	0,3329	0,3649
9	1995	176,16	264	0,428571	0,3340	0,4677	0,3329	0,3649
10	1996	116,86	303,96	0,476190	0,3963	0,5191	0,3836	0,4195
11	1997	509,14	309	0,523810	0,4041	0,5251	0,3901	0,4265
12	1998	11,19	398,8	0,571429	0,5385	0,6165	0,5051	0,5482
13	1999	398,8	509,14	0,619048	0,6786	0,6984	0,6382	0,6836
14	2000	1032,12	588,5	0,666667	0,7582	0,7429	0,7225	0,7649
15	2001	673,4	635,8	0,714286	0,7973	0,7652	0,7669	0,8060
16	2002	926,6	673,4	0,761905	0,8244	0,7810	0,7988	0,8349
17	2003	75,5	721,6	0,809524	0,8543	0,7992	0,8354	0,8670
18	2004	264	845	0,857143	0,9109	0,8373	0,9072	0,9271
19	2005	845	926,6	0,904762	0,9361	0,8572	0,9394	0,9527
20	2006	264	1032,12	0,952381	0,9587	0,8783	0,9671	0,9740

TablaN°48: Frecuencias observadas y teóricas acumuladas, estación Río Loncomilla en Bodega

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
1	1985	1560,6	decreciente 154,72	acumulada 0,043478	0,0050	0,0008	0,0401	_
2	1986	3940	664,84	0,086957	0,0468	0,0986	0,0993	-
3	1987	2221,2	681,8	0,130435	0,0494	0,1043	0,1019	_
4	1988	1987,6	999	0,173913	0,1181	0,2214	0,1583	-
5	1989	1134,5	1134,5	0,217391	0,1578	0,2728	0,1869	-
6	1990	664,84	1150	0,260870	0,1627	0,2786	0,1904	-
7	1991	3616,06	1455,6	0,304348	0,2709	0,3879	0,2653	-
8	1992	4000,3	1560,6	0,347826	0,3115	0,4225	0,2939	-
9	1993	2913,14	1938,32	0,391304	0,4601	0,5329	0,4057	-
10	1994	2705,34	1971,6	0,434783	0,4728	0,5415	0,4161	-
11	1995	1455,6	1987,6	0,478261	0,4789	0,5457	0,4211	-
12	1996	681,8	2221,2	0,521739	0,5642	0,6015	0,4953	-
13	1997	3071,2	2377	0,565217	0,6163	0,6346	0,5452	-
14	1998	154,72	2705,34	0,608696	0,7120	0,6950	0,6476	-
15	1999	1938,32	2913,14	0,652174	0,7622	0,7274	0,7082	-
16	2000	4227,8	3071,2	0,695652	0,7953	0,7494	0,7510	-
17	2001	3284,96	3205	0,739130	0,8201	0,7665	0,7847	-
18	2002	1971,6	3284,96	0,782609	0,8337	0,7761	0,8036	-
19	2003	1150	3616,06	0,826087	0,8804	0,8111	0,8712	-
20	2004	999	3940	0,869565	0,9141	0,8394	0,9204	-
21	2005	3205	4000,3	0,913043	0,9193	0,8441	0,9279	-
22	2006	2377	4227,8	0,956522	0,9363	0,8605	0,9513	-

TablaN°49: Frecuencias observadas y teóricas acumuladas, estación Río Longaví en el Castillo

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
1	1964	262	31,7	0,023256	0,0245	0,0006	0,0393	0,0524
2	1965	31,7	82,5	0,046512	0,0355	0,0127	0,0555	0,0672
3	1966	578	92,3	0,069767	0,0379	0,0171	0,0590	0,0703
4	1967	526	146	0,093023	0,0534	0,0509	0,0793	0,0891
5	1968	82,5	189,2	0,116279	0,0685	0,0862	0,0975	0,1062
6	1969	715	262	0,139535	0,0996	0,1533	0,1315	0,1388
7	1970	393	293,34	0,162791	0,1150	0,1831	0,1473	0,1542
8	1971	665	393	0,186047	0,1719	0,2754	0,2016	0,2084
9	1972	146	406,8	0,209302	0,1806	0,2876	0,2095	0,2165
10	1974	92,3	420	0,232558	0,1890	0,2992	0,2171	0,2243
11	1975	946,5	474,8	0,255814	0,2259	0,3453	0,2497	0,2578
12	1976	942,5	477,08	0,279070	0,2274	0,3472	0,2511	0,2592
13	1977	1024	526	0,302326	0,2621	0,3858	0,2810	0,2905
14	1978	1609,8	578	0,325581	0,3004	0,4241	0,3136	0,3246
15	1979	1149,4	606,8	0,348837	0,3219	0,4442	0,3318	0,3439
16	1980	1612,6	624	0,372093	0,3349	0,4558	0,3428	0,3554
17	1981	1504,8	665	0,395349	0,3659	0,4824	0,3690	0,3832
18	1982	1208	684,5	0,418605	0,3807	0,4945	0,3814	0,3964
19	1983	1502	713	0,441860	0,4023	0,5116	0,3997	0,4158
20	1984	420	715	0,465116	0,4038	0,5128	0,4010	0,4172
21	1985	1030	884,89	0,488372	0,5278	0,6010	0,5083	0,5308
22	1986	1713	909,82	0,511628	0,5450	0,6122	0,5236	0,5469

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
23	1987	684,5	942,5	0,534884	0,5670	0,6263	0,5434	0,5677
24	1988	713	946,5	0,558140	0,5696	0,6280	0,5458	0,5702
25	1989	477,08	1024	0,581395	0,6190	0,6588	0,5913	0,6175
26	1990	474,8	1030	0,604651	0,6226	0,6611	0,5947	0,6211
27	1991	2877,9	1149,4	0,627907	0,6904	0,7022	0,6602	0,6879
28	1992	1635,7	1208	0,651163	0,7201	0,7200	0,6901	0,7179
29	1993	606,8	1366,11	0,674419	0,7890	0,7618	0,7626	0,7890
30	1994	1558,7	1377,7	0,697674	0,7934	0,7645	0,7675	0,7936
31	1995	406,8	1378,11	0,720930	0,7936	0,7646	0,7676	0,7938
32	1996	624	1502	0,744186	0,8360	0,7915	0,8153	0,8388
33	1997	1526,5	1504,8	0,767442	0,8369	0,7921	0,8162	0,8397
34	1998	189,2	1526,5	0,790698	0,8434	0,7963	0,8238	0,8467
35	1999	293,34	1558,7	0,813953	0,8527	0,8025	0,8346	0,8566
36	2000	2054,88	1607,77	0,837209	0,8659	0,8114	0,8500	0,8707
37	2001	1378,11	1609,8	0,860465	0,8664	0,8118	0,8507	0,8713
38	2002	1366,11	1612,6	0,883721	0,8671	0,8123	0,8515	0,8721
39	2003	1607,77	1635,7	0,906977	0,8729	0,8163	0,8584	0,8783
40	2004	909,82	1713	0,930233	0,8905	0,8289	0,8796	0,8972
41	2005	1377,7	2054,88	0,953488	0,9443	0,8730	0,9456	0,9541
42	2006	884,89	2877,9	0,976744	0,9895	0,9325	0,9951	0,9951

TablaN°50: Frecuencias observadas y teóricas acumuladas, estación Río Maule en Forel

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
1	1988	1223	223	0,058824	0,1769	0,0584	0,1999	0,2076
2	1989	401,4	310,9	0,117647	0,1830	0,0891	0,2063	0,2139
3	1990	310,9	356,92	0,176471	0,1862	0,1049	0,2096	0,2172
4	1991	1135,84	401,4	0,235294	0,1894	0,1199	0,2129	0,2204
5	1992	223	779	0,294118	0,2168	0,2319	0,2407	0,2481
6	1996	356,92	1135,84	0,352941	0,2439	0,3153	0,2675	0,2750
7	1997	9179,88	1223	0,411765	0,2507	0,3331	0,2740	0,2817
8	1998	779	3334,34	0,470588	0,4227	0,5943	0,4330	0,4459
9	1999	4173,32	3652,81	0,529412	0,4486	0,6178	0,4563	0,4702
10	2000	17212,94	4173,32	0,588235	0,4901	0,6512	0,4935	0,5090
11	2001	10780,76	5707,64	0,647059	0,6033	0,7250	0,5960	0,6153
12	2002	16665,63	8673,13	0,705882	0,7714	0,8099	0,7561	0,7765
13	2003	3652,81	9179,88	0,764706	0,7932	0,8200	0,7781	0,7979
14	2004	3334,34	10780,76	0,823529	0,8507	0,8468	0,8380	0,8550
15	2005	8673,13	16665,63	0,882353	0,9578	0,9055	0,9577	0,9629
16	2006	5707,64	17212,94	0,941176	0,9626	0,9091	0,9632	0,9676

TablaN°51: Frecuencias observadas y teóricas acumuladas, estación Río Mataquito en Licantén

N	AÑOS	Q Max	< a >	Fn=Weibull	Gumbel	LogNormal	Goodrich	Pearson III
1	1987	4638,32	154,29	0,047619	0,0486	0,0087	0,0643	0,0711
2	1988	663,2	235,99	0,095238	0,0620	0,0281	0,0820	0,0864
3	1989	1360,66	333,96	0,142857	0,0809	0,0635	0,1052	0,1070
4	1990	333,96	663,2	0,190476	0,1665	0,2213	0,1961	0,1924
5	1991	1797,2	1116,35	0,238095	0,3245	0,4237	0,3402	0,3384
6	1992	1666,68	1177,6	0,285714	0,3476	0,4470	0,3603	0,3594
7	1993	1241,16	1200,64	0,333333	0,3563	0,4555	0,3679	0,3673
8	1994	1502,54	1241,16	0,380952	0,3716	0,4700	0,3811	0,3812
9	1995	1116,35	1360,66	0,428571	0,4167	0,5105	0,4202	0,4224
10	1996	154,29	1482,85	0,476190	0,4620	0,5483	0,4596	0,4641
11	1997	2526,17	1502,54	0,523810	0,4692	0,5541	0,4659	0,4707
12	1998	235,99	1620,18	0,571429	0,5114	0,5868	0,5029	0,5100
13	1999	1200,64	1666,68	0,619048	0,5277	0,5989	0,5173	0,5252
14	2000	4195,49	1797,2	0,666667	0,5718	0,6308	0,5568	0,5669
15	2001	3343,54	2394,86	0,714286	0,7390	0,7426	0,7155	0,7315
16	2002	3206,78	2526,17	0,761905	0,7678	0,7612	0,7448	0,7610
17	2003	1177,6	3206,78	0,809524	0,8770	0,8349	0,8636	0,8766
18	2004	1482,85	3343,54	0,857143	0,8922	0,8462	0,8812	0,8931
19	2005	2394,86	4195,49	0,904762	0,9536	0,8981	0,9542	0,9590
20	2006	1620,18	4638,32	0,952381	0,9703	0,9165	0,9738	0,9761

TablaN°52: Frecuencias observadas y teóricas acumuladas, estación Río Loanco en Desembocadura

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
1	1987	796,8	3,12	0,047619	0,1145	0,0055	0,1513	0,1674
2	1988	581,18	25,1	0,095238	0,1408	0,1225	0,1756	0,1928
3	1989	132,32	26,06	0,142857	0,1420	0,1276	0,1767	0,1940
4	1990	61,4	30,66	0,190476	0,1478	0,1515	0,1820	0,1995
5	1991	360,08	45,13	0,238095	0,1670	0,2194	0,1989	0,2174
6	1992	854,88	61,4	0,285714	0,1898	0,2843	0,2186	0,2383
7	1993	70,63	66,93	0,333333	0,1978	0,3040	0,2254	0,2456
8	1994	26,06	70,63	0,380952	0,2033	0,3166	0,2300	0,2505
9	1995	66,93	132,32	0,428571	0,3003	0,4755	0,3103	0,3369
10	1996	45,13	152,27	0,476190	0,3334	0,5126	0,3373	0,3662
11	1997	490,92	254,44	0,523810	0,5018	0,6450	0,4781	0,5173
12	1998	25,1	320,56	0,571429	0,6004	0,7002	0,5664	0,6097
13	1999	254,44	360,08	0,619048	0,6531	0,7264	0,6164	0,6607
14	2000	475,56	475,56	0,666667	0,7775	0,7841	0,7453	0,7861
15	2001	649,48	490,92	0,714286	0,7908	0,7903	0,7602	0,8000
16	2002	152,27	581,18	0,761905	0,8559	0,8210	0,8363	0,8684
17	2003	30,66	592,6	0,809524	0,8627	0,8243	0,8446	0,8755
18	2004	320,56	649,48	0,857143	0,8923	0,8396	0,8812	0,9066
19	2005	592,6	796,8	0,904762	0,9434	0,8704	0,9459	0,9585
20	2006	3,12	854,88	0,952381	0,9563	0,8800	0,9617	0,9706

TablaN°53: Frecuencias observadas y teóricas acumuladas, estación Río Maule en Longitudinal

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
1	1962	500,4	187,2	0,022727	0,0167	0,0058	0,0541	0,0551
2	1963	1416	330,6	0,045455	0,0398	0,0424	0,0845	0,0827
3	1964	762,6	359,48	0,068182	0,0463	0,0542	0,0916	0,0893
4	1965	1935,6	361,32	0,090909	0,0468	0,0550	0,0921	0,0897
5	1966	1462	362,44	0,113636	0,0470	0,0555	0,0923	0,0900
6	1967	582,4	400,4	0,136364	0,0568	0,0731	0,1022	0,0992
7	1968	187,2	482,8	0,159091	0,0820	0,1171	0,1257	0,1215
8	1969	1410	500,4	0,181818	0,0882	0,1273	0,1310	0,1266
9	1970	589,6	506,28	0,204545	0,0903	0,1308	0,1328	0,1283
10	1971	1696	538,97	0,227273	0,1026	0,1504	0,1432	0,1383
11	1972	3064	582,4	0,250000	0,1203	0,1773	0,1576	0,1524
12	1973	1826	589,6	0,272727	0,1234	0,1819	0,1600	0,1548
13	1974	2828	744,16	0,295455	0,1986	0,2809	0,2173	0,2119
14	1975	2412	762,6	0,318182	0,2085	0,2926	0,2247	0,2194
15	1976	1780,2	1014,14	0,340909	0,3569	0,4427	0,3352	0,3334
16	1977	1851,88	1020,59	0,363636	0,3609	0,4462	0,3383	0,3366
17	1978	2195,5	1248	0,386364	0,4979	0,5589	0,4490	0,4527
18	1979	1480	1276,4	0,409091	0,5142	0,5714	0,4632	0,4675
19	1981	1658	1329,2	0,431818	0,5439	0,5936	0,4895	0,4951
20	1982	2058	1410	0,454545	0,5873	0,6255	0,5296	0,5370
21	1983	1960	1416	0,477273	0,5904	0,6278	0,5326	0,5401
22	1984	1248	1439,8	0,500000	0,6027	0,6366	0,5443	0,5523

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
23	1985	1329,2	1462	0,522727	0,6139	0,6447	0,5552	0,5636
24	1986	1750	1480	0,545455	0,6228	0,6511	0,5640	0,5727
25	1987	1014,14	1607,56	0,568182	0,6820	0,6931	0,6250	0,6355
26	1988	482,8	1658	0,590909	0,7034	0,7083	0,6483	0,6593
27	1989	330,6	1661,76	0,613636	0,7049	0,7093	0,6501	0,6610
28	1990	361,32	1696	0,636364	0,7187	0,7191	0,6655	0,6767
29	1991	2823,69	1750	0,659091	0,7395	0,7338	0,6893	0,7007
30	1992	1020,59	1780,2	0,681818	0,7505	0,7417	0,7023	0,7137
31	1993	1607,56	1801,49	0,704545	0,7581	0,7470	0,7113	0,7227
32	1994	1801,49	1826	0,727273	0,7666	0,7531	0,7215	0,7329
33	1995	506,28	1851,88	0,750000	0,7752	0,7593	0,7320	0,7434
34	1996	362,44	1935,6	0,772727	0,8014	0,7783	0,7648	0,7756
35	1997	1276,4	1960	0,795455	0,8085	0,7835	0,7739	0,7845
36	1998	400,4	1979,92	0,818182	0,8141	0,7876	0,7811	0,7916
37	1999	538,97	2058	0,840909	0,8348	0,8031	0,8083	0,8180
38	2000	2557,42	2195,5	0,863636	0,8663	0,8274	0,8510	0,8587
39	2001	1439,8	2412	0,886364	0,9048	0,8591	0,9044	0,9088
40	2002	1979,92	2557,42	0,909091	0,9246	0,8767	0,9315	0,9338
41	2003	744,16	2823,69	0,931818	0,9509	0,9029	0,9655	0,9651
42	2004	359,48	2828	0,954545	0,9513	0,9033	0,9659	0,9654
43	2005	1661,76	3064	0,977273	0,9669	0,9212	0,9830	0,9815

TablaN°54: Frecuencias observadas y teóricas acumuladas, estación Río Melado en el Salto

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
1	2003	972,04	875,42	0,2	0,0310	0,0768	0,0898	0,0446
2	2004	940,08	940,08	0,4	0,6238	0,5595	0,5157	0,6378
3	2005	950,27	950,27	0,6	0,7085	0,6510	0,6160	0,7311
4	2006	875,42	972,04	0,8	0,8386	0,8131	0,8135	0,8736

TablaN°55: Frecuencias observadas y teóricas acumuladas, estación Río Purapel en Nirivilo

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
1	1960	29	1,92	0,020833	0,0265	0,0006	0,0571	0,0649
2	1961	60,48	4,29	0,041667	0,0309	0,0060	0,0632	0,0706
3	1962	33,8	12,22	0,062500	0,0491	0,0578	0,0860	0,0921
4	1963	97,12	12,4	0,083333	0,0496	0,0593	0,0865	0,0926
5	1964	12,22	12,9	0,104167	0,0509	0,0636	0,0881	0,0941
6	1965	159	17,37	0,125000	0,0641	0,1040	0,1026	0,1080
7	1966	137	17,82	0,145833	0,0656	0,1082	0,1042	0,1095
8	1967	12,9	19,6	0,166667	0,0715	0,1249	0,1103	0,1154
9	1968	1,92	19,6	0,187500	0,0715	0,1249	0,1103	0,1154
10	1969	133	19,83	0,208333	0,0722	0,1271	0,1111	0,1162
11	1970	148	29	0,229167	0,1078	0,2118	0,1454	0,1498
12	1971	100	33,8	0,250000	0,1297	0,2536	0,1649	0,1694
13	1972	19,6	38,83	0,270833	0,1548	0,2949	0,1866	0,1913
14	1973	4,29	60,48	0,291667	0,2828	0,4433	0,2903	0,2991

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
15	1974	17,82	71,33	0,312500	0,3539	0,5020	0,3470	0,3592
16	1975	199,2	72,79	0,333333	0,3636	0,5093	0,3548	0,3674
17	1976	38,83	73,4	0,354167	0,3677	0,5122	0,3581	0,3709
18	1977	95,93	76,82	0,375000	0,3903	0,5285	0,3765	0,3904
19	1978	119,76	92,04	0,395833	0,4892	0,5922	0,4590	0,4781
20	1979	130,3	95,47	0,416667	0,5106	0,6048	0,4775	0,4977
21	1980	136,8	95,93	0,437500	0,5134	0,6065	0,4800	0,5004
22	1981	76,82	97,12	0,458333	0,5207	0,6107	0,4864	0,5071
23	1982	161	100	0,479167	0,5382	0,6207	0,5019	0,5235
24	1983	133	100,63	0,500000	0,5420	0,6229	0,5053	0,5270
25	1984	245	119,76	0,520833	0,6480	0,6804	0,6048	0,6304
26	1985	12,4	127,7	0,541667	0,6866	0,7006	0,6437	0,6700
27	1986	153	130,3	0,562500	0,6985	0,7069	0,6560	0,6825
28	1987	155,64	133	0,583333	0,7105	0,7131	0,6686	0,6952
29	1988	135,7	133	0,604167	0,7105	0,7131	0,6686	0,6952
30	1989	73,4	135,7	0,625000	0,7221	0,7192	0,6810	0,7075
31	1990	19,6	136,27	0,645833	0,7245	0,7205	0,6836	0,7101
32	1991	127,7	136,8	0,666667	0,7268	0,7217	0,6860	0,7125
33	1992	315,22	137	0,687500	0,7276	0,7221	0,6869	0,7134
34	1993	71,33	143,56	0,708333	0,7539	0,7360	0,7156	0,7418
35	1994	100,63	145,78	0,729167	0,7623	0,7404	0,7250	0,7510
36	1995	95,47	148	0,750000	0,7704	0,7448	0,7342	0,7600
37	1996	72,79	153	0,770833	0,7879	0,7543	0,7543	0,7794

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
38	1997	219,84	155,64	0,791667	0,7967	0,7590	0,7646	0,7893
39	1998	19,83	157,93	0,812500	0,8041	0,7631	0,7732	0,7975
40	1999	136,27	159	0,833333	0,8074	0,7650	0,7772	0,8013
41	2000	179,82	161	0,854167	0,8136	0,7684	0,7845	0,8083
42	2001	208,42	179,82	0,875000	0,8633	0,7974	0,8459	0,8652
43	2002	145,78	199,2	0,895833	0,9015	0,8223	0,8951	0,9092
44	2003	17,37	208,42	0,916667	0,9160	0,8326	0,9139	0,9256
45	2004	92,04	219,84	0,937500	0,9310	0,8443	0,9334	0,9424
46	2005	143,56	245	0,958333	0,9556	0,8663	0,9641	0,9683
47	2006	157,93	315,22	0,979167	0,9873	0,9090	0,9957	0,9952

TablaN°56: Frecuencias observadas y teóricas acumuladas, estación Río Perquilauquén en Ñiquen

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
1	1987	574,2	109,44	0,047619	0,0050	0,0069	0,0460	0,0365
2	1988	614,24	116	0,095238	0,0056	0,0086	0,0476	0,0381
3	1989	405,4	349,72	0,142857	0,0964	0,1993	0,1376	0,1379
4	1990	349,72	405,4	0,190476	0,1444	0,2616	0,1698	0,1758
5	1991	1044,76	422,77	0,238095	0,1613	0,2809	0,1808	0,1888
6	1992	1040,44	533,04	0,285714	0,2856	0,3984	0,2609	0,2828
7	1993	1075,96	574,2	0,333333	0,3364	0,4389	0,2953	0,3223

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
8	1994	1113,5	587,5	0,380952	0,3530	0,4515	0,3068	0,3355
9	1995	722,48	614,24	0,428571	0,3865	0,4761	0,3308	0,3625
10	1996	422,77	722,48	0,476190	0,5181	0,5659	0,4354	0,4762
11	1997	964,44	882,2	0,523810	0,6826	0,6715	0,6014	0,6411
12	1998	109,44	964,44	0,571429	0,7493	0,7151	0,6846	0,7171
13	1999	533,04	1031,8	0,619048	0,7950	0,7461	0,7480	0,7723
14	2000	1378,64	1040,44	0,666667	0,8003	0,7498	0,7557	0,7788
15	2001	1302,32	1044,76	0,714286	0,8029	0,7516	0,7595	0,7821
16	2002	1109,6	1075,96	0,761905	0,8209	0,7644	0,7863	0,8046
17	2003	116	1109,6	0,809524	0,8386	0,7774	0,8134	0,8271
18	2004	587,5	1113,5	0,857143	0,8405	0,7789	0,8164	0,8296
19	2005	1031,8	1302,32	0,904762	0,9127	0,8381	0,9289	0,9222
20	2006	882,2	1378,64	0,952381	0,9320	0,8567	0,9562	0,9458

TablaN°57: Frecuencias observadas y teóricas acumuladas, estación Río Palos en junta con Colorado

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
1	1967	51,96	27,54	0,024390	0,0165	0,0041	0,0527	0,0517
2	1968	27,54	48,1	0,048780	0,0330	0,0288	0,0766	0,0726
3	1969	152,8	51,96	0,073171	0,0371	0,0363	0,0817	0,0771
4	1970	48,1	58,75	0,097561	0,0451	0,0514	0,0911	0,0855
5	1971	199	63,62	0,121951	0,0516	0,0636	0,0981	0,0919

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
6	1972	281	82,38	0,146341	0,0819	0,1191	0,1279	0,1196
7	1973	302,18	83,45	0,170732	0,0839	0,1226	0,1298	0,1213
8	1974	213,36	88,12	0,195122	0,0929	0,1380	0,1379	0,1290
9	1975	243,24	90,51	0,219512	0,0977	0,1461	0,1421	0,1331
10	1976	254,96	125	0,243902	0,1821	0,2670	0,2104	0,2002
11	1977	319,5	127,4	0,268293	0,1889	0,2755	0,2156	0,2054
12	1978	410	140,52	0,292683	0,2276	0,3209	0,2450	0,2353
13	1979	395	144,36	0,317073	0,2393	0,3339	0,2539	0,2444
14	1980	466	152,8	0,341463	0,2658	0,3620	0,2738	0,2650
15	1981	275	199	0,365854	0,4177	0,5000	0,3906	0,3878
16	1982	295	213,36	0,390244	0,4645	0,5371	0,4287	0,4283
17	1983	88,12	224,51	0,414634	0,4999	0,5641	0,4584	0,4599
18	1984	127,4	243,24	0,439024	0,5569	0,6058	0,5082	0,5129
19	1985	125	247,1	0,463415	0,5681	0,6139	0,5184	0,5238
20	1986	63,62	254,96	0,487805	0,5906	0,6298	0,5391	0,5457
21	1987	264,68	264,68	0,512195	0,6173	0,6486	0,5645	0,5724
22	1988	83,45	267,09	0,536585	0,6238	0,6530	0,5707	0,5790
23	1989	144,36	271,6	0,560976	0,6356	0,6613	0,5823	0,5912
24	1990	58,75	275	0,585366	0,6444	0,6673	0,5909	0,6003
25	1991	447,86	281	0,609756	0,6595	0,6778	0,6061	0,6161
26	1992	247,1	295	0,634146	0,6929	0,7007	0,6407	0,6521
27	1993	358,36	302,18	0,658537	0,7091	0,7118	0,6580	0,6700
28	1994	375,41	310,03	0,682927	0,7259	0,7234	0,6764	0,6889

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
29	1995	224,51	319,5	0,707317	0,7453	0,7367	0,6981	0,7110
30	1996	140,52	323,92	0,731707	0,7539	0,7426	0,7079	0,7211
31	1997	323,92	358,36	0,756098	0,8130	0,7843	0,7789	0,7920
32	1998	90,51	371,33	0,780488	0,8318	0,7979	0,8027	0,8153
33	1999	82,38	375,41	0,804878	0,8374	0,8020	0,8098	0,8222
34	2000	597,4	395	0,829268	0,8618	0,8204	0,8419	0,8530
35	2001	371,33	398,25	0,853659	0,8656	0,8232	0,8468	0,8577
36	2002	271,6	410	0,878049	0,8782	0,8331	0,8638	0,8738
37	2003	310,03	447,86	0,902439	0,9119	0,8610	0,9096	0,9164
38	2004	518,57	466	0,926829	0,9247	0,8724	0,9270	0,9322
39	2005	398,25	518,57	0,951220	0,9525	0,8999	0,9631	0,9648
40	2006	267,09	597,4	0,975610	0,9764	0,9292	0,9890	0,9883

TablaN°58: Frecuencias observadas y teóricas acumuladas, estación Río Putagán en Yerbas Buenas

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
1	1987	553,38	52,83	0,047619	0,0121	0,0038	0,0338	0,0391
2	1988	414,16	110,52	0,095238	0,0498	0,0612	0,0870	0,0854
3	1989	315,8	154,13	0,142857	0,1065	0,1496	0,1438	0,1377
4	1990	204,6	181,47	0,190476	0,1549	0,2149	0,1860	0,1783
5	1991	557,54	204,6	0,238095	0,2024	0,2720	0,2251	0,2169

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
6	1992	824,6	210,5	0,285714	0,2153	0,2866	0,2355	0,2273
7	1993	210,5	246,43	0,333333	0,2989	0,3732	0,3019	0,2951
8	1994	557,02	270,3	0,380952	0,3573	0,4276	0,3484	0,3434
9	1995	400,48	297,15	0,428571	0,4232	0,4847	0,4021	0,3996
10	1996	110,52	315,8	0,476190	0,4681	0,5217	0,4397	0,4392
11	1997	555,46	400,48	0,523810	0,6501	0,6614	0,6059	0,6138
12	1998	52,83	410,58	0,571429	0,6687	0,6752	0,6245	0,6331
13	1999	410,58	414,16	0,619048	0,6751	0,6799	0,6310	0,6399
14	2000	470,37	429,52	0,666667	0,7015	0,6995	0,6584	0,6681
15	2001	429,52	470,37	0,714286	0,7636	0,7458	0,7261	0,7370
16	2002	270,3	553,38	0,761905	0,8566	0,8183	0,8376	0,8469
17	2003	154,13	555,46	0,809524	0,8585	0,8198	0,8400	0,8491
18	2004	181,47	557,02	0,857143	0,8598	0,8209	0,8417	0,8508
19	2005	297,15	557,54	0,904762	0,8603	0,8213	0,8423	0,8513
20	2006	246,43	824,6	0,952381	0,9751	0,9353	0,9860	0,9850

TablaN°59: Frecuencias observadas y teóricas acumuladas, estación Río Perquilauquén en Quella

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
1	1963	939,6	71	0,022727	0,0058	0,0002	0,0264	0,0331
2	1964	366	130,36	0,045455	0,0107	0,0037	0,0379	0,0435
3	1965	1015,8	344,04	0,068182	0,0573	0,0907	0,1002	0,1008
4	1966	760	366	0,090909	0,0654	0,1055	0,1085	0,1087
5	1967	456	373,06	0,113636	0,0682	0,1104	0,1112	0,1113
6	1968	71	456	0,136364	0,1059	0,1719	0,1459	0,1450
7	1969	1645,8	470,28	0,159091	0,1134	0,1830	0,1523	0,1514
8	1970	872,6	483,44	0,181818	0,1205	0,1933	0,1584	0,1574
9	1971	979	617,83	0,204545	0,2053	0,2993	0,2263	0,2260
10	1972	2102,6	707,6	0,227273	0,2714	0,3674	0,2770	0,2786
11	1973	755	718,4	0,250000	0,2797	0,3753	0,2834	0,2853
12	1974	1010,6	755	0,272727	0,3081	0,4016	0,3052	0,3081
13	1975	2319,6	760	0,295455	0,3120	0,4052	0,3082	0,3113
14	1976	718,4	766,08	0,318182	0,3168	0,4094	0,3119	0,3152
15	1977	1058,9	783,08	0,340909	0,3302	0,4213	0,3223	0,3261
16	1978	707,6	784,78	0,363636	0,3316	0,4224	0,3233	0,3272
17	1979	1745,32	794,4	0,386364	0,3392	0,4290	0,3292	0,3334
18	1980	1730,56	798,96	0,409091	0,3428	0,4322	0,3320	0,3364
19	1981	794,4	814,47	0,431818	0,3551	0,4426	0,3417	0,3465
20	1982	1638,6	872,6	0,454545	0,4012	0,4805	0,3782	0,3852
21	1983	1915,4	939,6	0,477273	0,4537	0,5213	0,4210	0,4306
22	1984	1376,4	963	0,500000	0,4717	0,5348	0,4361	0,4465

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
23	1985	963	decreciente 979	acumulada 0,522727	0,4839	0,5439	0,4464	0,4574
24	1986	1585,6	1010,6	0,545455	0,5077	0,5613	0,4667	0,4790
		, and the second	,	,	<u> </u>	ŕ		,
25	1987	1151,56	1015,8	0,568182	0,5115	0,5641	0,4701	0,4825
26	1988	798,96	1058,9	0,590909	0,5429	0,5866	0,4978	0,5117
27	1989	470,28	1089,56	0,613636	0,5646	0,6019	0,5174	0,5323
28	1990	344,04	1151,56	0,636364	0,6065	0,6311	0,5566	0,5733
29	1991	1953,9	1376,4	0,659091	0,7351	0,7196	0,6895	0,7093
30	1992	1420,92	1420,92	0,681818	0,7561	0,7342	0,7134	0,7330
31	1993	1802,66	1585,6	0,704545	0,8221	0,7815	0,7928	0,8104
32	1994	1756,6	1638,6	0,727273	0,8397	0,7947	0,8151	0,8316
33	1995	784,78	1645,8	0,750000	0,8420	0,7964	0,8180	0,8343
34	1996	373,06	1730,56	0,772727	0,8665	0,8155	0,8501	0,8643
35	1997	783,08	1745,32	0,795455	0,8704	0,8186	0,8553	0,8691
36	1998	130,36	1756,6	0,818182	0,8734	0,8209	0,8591	0,8726
37	1999	766,08	1802,66	0,840909	0,8846	0,8302	0,8741	0,8864
38	2000	1089,56	1915,4	0,863636	0,9084	0,8505	0,9061	0,9153
39	2001	2029,9	1953,9	0,886364	0,9154	0,8568	0,9154	0,9236
40	2002	2111,32	2029,9	0,909091	0,9277	0,8684	0,9319	0,9382
41	2003	814,47	2102,6	0,931818	0,9379	0,8785	0,9452	0,9499
42	2004	483,44	2111,32	0,954545	0,9390	0,8797	0,9466	0,9511
43	2005	617,83	2319,6	0,977273	0,9606	0,9038	0,9730	0,9743

TablaN°60: Frecuencias observadas y teóricas acumuladas, estación Río Longaví en Quiriquina

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
1	1960	489,8	decreciente 90,18	acumulada 0,020833	0,0173	0,0016	0,0432	_
2	1961	1305	189,2	0,020633	0,0359	0,0010	0,0697	_
			,	ŕ		ŕ	,	
3	1962	219,4	198,4	0,062500	0,0381	0,0274	0,0725	-
4	1963	990	219,4	0,083333	0,0436	0,0369	0,0791	-
5	1964	261	261	0,104167	0,0560	0,0594	0,0931	-
6	1965	1336	347,36	0,125000	0,0885	0,1179	0,1259	-
7	1966	606	363	0,145833	0,0953	0,1298	0,1323	-
8	1967	474,6	398,4	0,166667	0,1120	0,1573	0,1474	-
9	1968	90,18	445,12	0,187500	0,1361	0,1949	0,1685	-
10	1969	1197,6	471,56	0,208333	0,1508	0,2164	0,1809	-
11	1970	363	474,6	0,229167	0,1526	0,2189	0,1824	-
12	1971	1044	489,8	0,250000	0,1614	0,2313	0,1897	-
13	1972	1336	573	0,270833	0,2135	0,2984	0,2320	-
14	1973	198,4	582,6	0,291667	0,2199	0,3060	0,2371	-
15	1974	573	606	0,312500	0,2356	0,3244	0,2496	-
16	1975	791,8	696,3	0,333333	0,2992	0,3923	0,2999	-
17	1976	855,2	713,78	0,354167	0,3119	0,4048	0,3099	-
18	1977	840,8	791,8	0,375000	0,3691	0,4582	0,3556	-
19	1978	1162,8	840,8	0,395833	0,4051	0,4896	0,3849	-
20	1979	1752	855,2	0,416667	0,4156	0,4985	0,3935	-
21	1980	2089,4	925,18	0,437500	0,4661	0,5395	0,4358	-
22	1981	1587,2	972,18	0,458333	0,4991	0,5652	0,4643	-

n	AÑOS	Q Max	Orden decreciente	Frec. Obs. acumulada	Gumbel	LogNormal	Goodrich	Pearson III
23	1982	1054,8	990	0,479167	0,5114	0,5746	0,4750	-
24	1983	1540,8	1027,8	0,500000	0,5370	0,5937	0,4977	-
25	1984	398,4	1044	0,520833	0,5478	0,6017	0,5074	-
26	1985	1027,8	1054,8	0,541667	0,5549	0,6069	0,5139	-
27	1986	1773,2	1162,8	0,562500	0,6222	0,6551	0,5772	-
28	1987	713,78	1197,6	0,583333	0,6423	0,6692	0,5970	-
29	1988	696,3	1204,56	0,604167	0,6463	0,6719	0,6009	-
30	1989	471,56	1305	0,625000	0,6997	0,7089	0,6558	-
31	1990	445,12	1317,73	0,645833	0,7060	0,7133	0,6625	-
32	1991	2534,9	1336	0,666667	0,7149	0,7194	0,6720	-
33	1992	1204,56	1336	0,687500	0,7149	0,7194	0,6720	-
34	1993	1596,72	1343,44	0,708333	0,7185	0,7219	0,6758	-
35	1994	1343,44	1540,8	0,729167	0,8003	0,7788	0,7689	-
36	1995	972,18	1587,2	0,750000	0,8162	0,7902	0,7882	-
37	1996	582,6	1590,6	0,770833	0,8174	0,7910	0,7896	-
38	1997	1590,6	1596,72	0,791667	0,8194	0,7924	0,7920	-
39	1998	189,2	1752	0,812500	0,8641	0,8255	0,8482	-
40	1999	347,36	1773,2	0,833333	0,8694	0,8295	0,8549	-
41	2000	2056	1845,11	0,854167	0,8858	0,8424	0,8763	-
42	2001	1910	1910	0,875000	0,8990	0,8531	0,8935	-
43	2002	2502,67	2056	0,895833	0,9236	0,8742	0,9257	-

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
44	2003	2097,7	2089,4	0,916667	0,9283	0,8785	0,9319	-
45	2004	1317,73	2097,7	0,937500	0,9295	0,8795	0,9333	-
46	2005	1845,11	2502,67	0,958333	0,9680	0,9199	0,9797	-
47	2006	925,18	2534,9	0,979167	0,9700	0,9223	0,9817	-

TablaN°61: Frecuencias observadas y teóricas acumuladas, estación Río Lircay en puente las Rastras

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
1	1961	2,15	2,15	0,021739	0,0123	0,0000	0,0160	0,3318
2	1962	119,6	16,47	0,043478	0,0185	0,0088	0,0270	0,3752
3	1963	253	16,62	0,065217	0,0186	0,0090	0,0271	0,3757
4	1964	107,6	72,19	0,086957	0,0657	0,1550	0,0923	0,5396
5	1965	372,8	75,34	0,108696	0,0697	0,1646	0,0969	0,5483
6	1966	270,6	83,9	0,130435	0,0811	0,1902	0,1100	0,5717
7	1967	83,9	99,76	0,152174	0,1051	0,2364	0,1359	0,6132
8	1968	16,62	106,5	0,173913	0,1163	0,2553	0,1475	0,6301
9	1969	453,8	107,6	0,195652	0,1182	0,2583	0,1494	0,6328
10	1970	203,2	119,6	0,217391	0,1399	0,2907	0,1709	0,6616
11	1971	309,4	150,55	0,239130	0,2038	0,3669	0,2302	0,7289

n	AÑOS	Q Max	Orden decreciente	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
12	1972	581,2	181,46	0,260870	0,2761	0,4330	0,2936	0,7859
13	1974	106,5	188,1	0,282609	0,2924	0,4461	0,3076	0,7969
14	1975	99,76	203,2	0,304348	0,3299	0,4742	0,3396	0,8201
15	1976	16,47	222,36	0,326087	0,3782	0,5072	0,3806	0,8464
16	1977	287,96	247	0,347826	0,4399	0,5456	0,4333	0,8755
17	1978	428,26	253	0,369565	0,4547	0,5543	0,4460	0,8819
18	1979	343,38	263,15	0,391304	0,4794	0,5686	0,4675	0,8919
19	1980	470,43	270,6	0,413043	0,4973	0,5786	0,4831	0,8989
20	1981	289,22	271,7	0,434783	0,4999	0,5801	0,4854	0,8998
21	1982	425,29	282,94	0,456522	0,5263	0,5946	0,5086	0,9095
22	1983	247	287,33	0,478261	0,5364	0,6000	0,5176	0,9130
23	1984	342,72	287,96	0,500000	0,5378	0,6008	0,5189	0,9135
24	1985	353,64	289,22	0,521739	0,5407	0,6024	0,5215	0,9145
25	1986	698,8	291,75	0,543478	0,5465	0,6054	0,5266	0,9164
26	1987	465,04	298,29	0,565217	0,5611	0,6133	0,5398	0,9213
27	1988	222,36	309,4	0,586957	0,5854	0,6260	0,5619	0,9290
28	1989	298,29	342,72	0,608696	0,6530	0,6610	0,6252	0,9482
29	1990	75,34	343,38	0,630435	0,6543	0,6617	0,6264	0,9485
30	1991	397,16	353,64	0,652174	0,6734	0,6715	0,6449	0,9534
31	1992	458,05	365,66	0,673913	0,6948	0,6825	0,6659	0,9585
32	1993	287,33	372,8	0,695652	0,7070	0,6888	0,6780	0,9613
33	1994	150,55	397,16	0,717391	0,7457	0,7091	0,7175	0,9696
34	1995	291,75	425,29	0,739130	0,7851	0,7302	0,7591	0,9772

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
35	1996	188,1	428,26	0,760870	0,7889	0,7324	0,7633	0,9779
36	1997	431,24	431,24	0,782609	0,7927	0,7344	0,7674	0,9785
37	1998	72,19	453,8	0,804348	0,8196	0,7496	0,7970	0,9830
38	1999	181,46	454,92	0,826087	0,8208	0,7503	0,7984	0,9832
39	2000	850	458,05	0,847826	0,8243	0,7523	0,8022	0,9837
40	2001	721	465,04	0,869565	0,8317	0,7567	0,8107	0,9849
41	2002	263,15	470,43	0,891304	0,8373	0,7600	0,8170	0,9857
42	2003	271,7	581,2	0,913043	0,9203	0,8160	0,9155	0,9957
43	2004	365,66	698,8	0,934783	0,9636	0,8576	0,9679	0,9989
44	2005	454,92	721	0,956522	0,9686	0,8640	0,9738	0,9991
45	2006	282,94	850	0,978261	0,9869	0,8942	0,9926	0,9998

TablaN°62: Frecuencias observadas y teóricas acumuladas, estación Río Claro en Rauquen

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
1	1999	1460,79	690,78	0,111111	0,0113	0,0318	0,0610	0,0491
2	2000	1962,22	961,66	0,222222	0,1107	0,1621	0,1456	0,1557
3	2001	2100,08	1254,34	0,333333	0,3601	0,3866	0,3053	0,3577
4	2002	1755,31	1460,79	0,444444	0,5519	0,5445	0,4584	0,5270
5	2003	690,78	1674,64	0,555556	0,7124	0,6810	0,6328	0,6904
6	2004	961,66	1755,31	0,666667	0,7600	0,7238	0,6964	0,7436
7	2005	1674,64	1962,22	0,777778	0,8526	0,8124	0,8376	0,8526
8	2006	1254,34	2100,08	0,888889	0,8948	0,8565	0,9061	0,9035

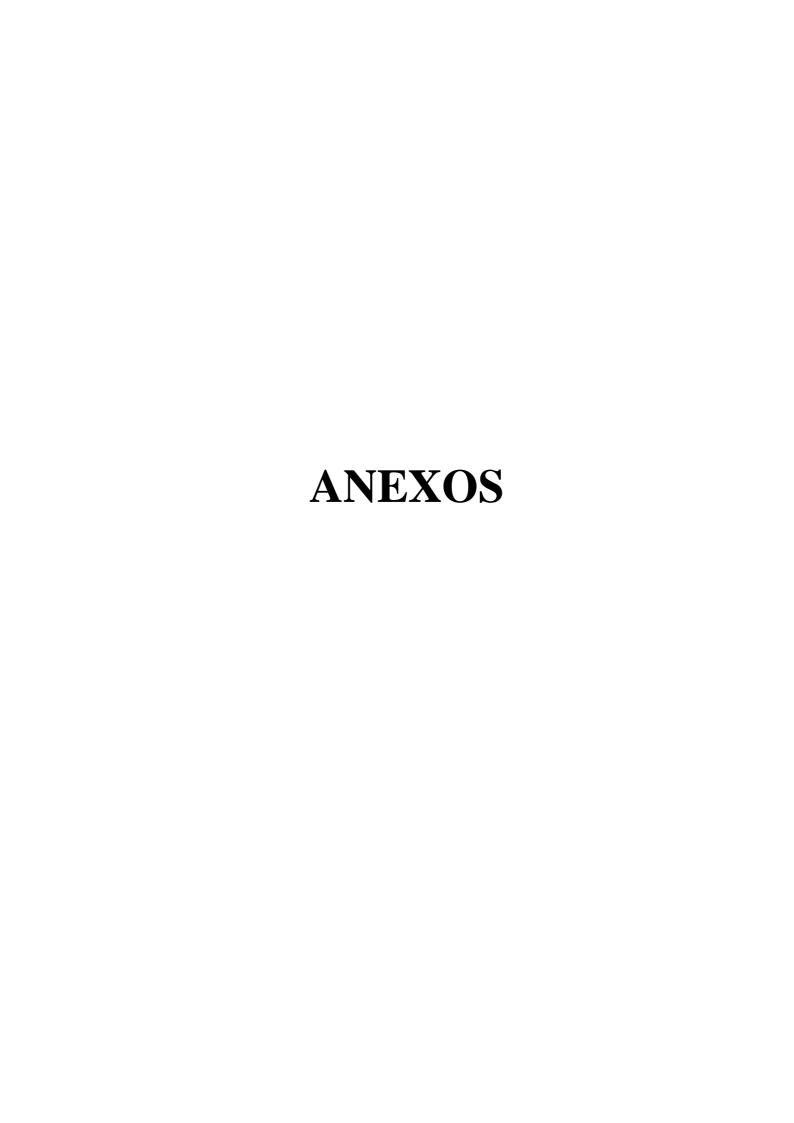
TablaN°63: Frecuencias observadas y teóricas acumuladas, estación Río Perquilauquén en San Manuel

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
1	1960	584,4	92,53	0,020833	0,0008	0,0012	0,0238	_
2	1961	402,2	99,88	0,041667	0,0011	0,0018	0,0257	-
3	1962	217,4	121,6	0,062500	0,0021	0,0052	0,0320	-
4	1963	465	207,8	0,083333	0,0172	0,0499	0,0671	-
5	1964	207,8	217,4	0,104167	0,0207	0,0584	0,0722	-
6	1965	580,8	346,8	0,125000	0,1257	0,2216	0,1658	-
7	1966	444,6	348,69	0,145833	0,1281	0,2244	0,1675	-
8	1967	489,2	354,4	0,166667	0,1355	0,2328	0,1728	-
9	1968	121,6	391,31	0,187500	0,1879	0,2879	0,2093	-
10	1969	885,2	402,2	0,208333	0,2048	0,3042	0,2208	-
11	1970	454,8	435,6	0,229167	0,2595	0,3536	0,2582	-
12	1971	639,3	444,6	0,250000	0,2748	0,3667	0,2687	-
13	1972	624,48	454,8	0,270833	0,2925	0,3815	0,2809	-
14	1973	99,88	465	0,291667	0,3103	0,3961	0,2934	-
15	1974	517	465,64	0,312500	0,3114	0,3970	0,2942	-
16	1975	1030,4	489,2	0,333333	0,3532	0,4300	0,3239	-
17	1976	651,8	502	0,354167	0,3760	0,4475	0,3405	-
18	1977	690,6	507,46	0,375000	0,3857	0,4548	0,3477	-
19	1978	635,28	517	0,395833	0,4026	0,4675	0,3603	-
20	1979	951,9	579,52	0,416667	0,5106	0,5455	0,4466	-
21	1980	902,22	580,8	0,437500	0,5127	0,5470	0,4485	-
22	1981	696	584,4	0,458333	0,5187	0,5512	0,4536	-
23	1982	579,52	624,48	0,479167	0,5823	0,5959	0,5108	-
24	1983	866,8	635,28	0,500000	0,5986	0,6072	0,5262	-
25	1984	354,4	635,6	0,520833	0,5991	0,6075	0,5267	-
26	1985	709,2	639,3	0,541667	0,6046	0,6114	0,5320	-
27	1986	775,2	651,8	0,562500	0,6227	0,6240	0,5498	-
28	1987	502	670,73	0,583333	0,6491	0,6425	0,5767	-

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
29	1988	507,46	674,68	0,604167	0,6544	0,6463	0,5823	-
30	1989	435,6	690,6	0,625000	0,6753	0,6611	0,6046	=
31	1990	346,8	696	0,645833	0,6822	0,6659	0,6121	=
32	1991	948,28	709,2	0,666667	0,6985	0,6776	0,6304	-
33	1992	796,76	775,2	0,687500	0,7705	0,7303	0,7170	=
34	1993	857,44	796,76	0,708333	0,7907	0,7456	0,7433	=
35	1994	888,26	796,77	0,729167	0,7907	0,7456	0,7433	-
36	1995	635,6	802,22	0,750000	0,7956	0,7494	0,7498	=
37	1996	465,64	857,44	0,770833	0,8394	0,7843	0,8104	ı
38	1997	877,38	866,8	0,791667	0,8459	0,7897	0,8198	=
39	1998	92,53	877,38	0,812500	0,8530	0,7957	0,8300	=
40	1999	348,69	885,2	0,833333	0,8581	0,7999	0,8374	=
41	2000	1244,94	888,26	0,854167	0,8600	0,8016	0,8402	-
42	2001	1124,59	902,22	0,875000	0,8685	0,8090	0,8527	-
43	2002	391,31	948,28	0,895833	0,8934	0,8314	0,8895	-
44	2003	802,22	951,9	0,916667	0,8951	0,8330	0,8921	-
45	2004	670,73	1030,4	0,937500	0,9270	0,8648	0,9386	-
46	2005	796,77	1124,59	0,958333	0,9531	0,8948	0,9725	-
47	2006	674,68	1244,94	0,979167	0,9735	0,9232	0,9921	-

TablaN°64: Frecuencias observadas y teóricas acumuladas, estación Río Teno después de junta con Claro

n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
1	1960	124,7	50,6	0,020833	0,0175	0,0019	0,0411	0,0486
2	1961	485,6	102,8	0,041667	0,0434	0,0308	0,0774	0,0814
3	1962	206,14	124,7	0,062500	0,0596	0,0560	0,0961	0,0986
4	1963	429,84	149,4	0,083333	0,0821	0,0921	0,1195	0,1206
5	1964	200,48	154,76	0,104167	0,0875	0,1009	0,1249	0,1258
6	1965	492,4	160	0,125000	0,0931	0,1096	0,1302	0,1309
7	1966	314	163,1	0,145833	0,0964	0,1149	0,1335	0,1340
8	1967	160	164,38	0,166667	0,0978	0,1172	0,1348	0,1353
9	1968	50,6	190,73	0,187500	0,1294	0,1650	0,1637	0,1634
10	1969	712,5	200,48	0,208333	0,1423	0,1836	0,1750	0,1746
11	1970	102,8	200,8	0,229167	0,1427	0,1842	0,1754	0,1749
12	1971	442,02	203,4	0,250000	0,1462	0,1892	0,1785	0,1780
13	1972	471,66	206,14	0,270833	0,1500	0,1945	0,1817	0,1812
14	1973	562,28	238	0,291667	0,1970	0,2568	0,2212	0,2208
15	1974	238,4	238,4	0,312500	0,1976	0,2575	0,2217	0,2213
16	1975	163,1	266,86	0,333333	0,2437	0,3129	0,2592	0,2597
17	1976	346,06	314	0,354167	0,3255	0,4005	0,3249	0,3280
18	1977	691,8	314,84	0,375000	0,3270	0,4020	0,3261	0,3293
19	1978	712,92	334,4	0,395833	0,3619	0,4361	0,3543	0,3589
20	1979	639,84	346,06	0,416667	0,3828	0,4557	0,3713	0,3768
21	1980	714,28	416,8	0,437500	0,5063	0,5628	0,4753	0,4866
22	1981	314,84	429,82	0,458333	0,5279	0,5803	0,4943	0,5067
23	1982	545,8	429,84	0,479167	0,5279	0,5803	0,4943	0,5067
24	1983	200,8	442,02	0,500000	0,5477	0,5961	0,5120	0,5253
25	1984	416,8	460,44	0,520833	0,5767	0,6188	0,5385	0,5530
26	1985	238	471,66	0,541667	0,5938	0,6320	0,5544	0,5697
27	1986	943	485,6	0,562500	0,6145	0,6478	0,5739	0,5900
28	1987	203,4	492,4	0,583333	0,6243	0,6552	0,5834	0,5998


n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
29	1988	266,86	502,16	0,604167	0,6381	0,6656	0,5967	0,6136
30	1989	502,16	525	0,625000	0,6690	0,6888	0,6274	0,6452
31	1990	149,4	531,33	0,645833	0,6772	0,6949	0,6357	0,6537
32	1991	672,42	545,8	0,666667	0,6953	0,7084	0,6544	0,6727
33	1992	429,82	562,28	0,687500	0,7151	0,7230	0,6751	0,6937
34	1993	525	639,84	0,708333	0,7946	0,7819	0,7634	0,7814
35	1994	460,44	672,42	0,729167	0,8218	0,8025	0,7956	0,8125
36	1995	334,4	691,8	0,750000	0,8365	0,8138	0,8133	0,8295
37	1996	154,76	712,5	0,770833	0,8509	0,8250	0,8311	0,8463
38	1997	737,44	712,92	0,791667	0,8512	0,8252	0,8315	0,8466
39	1998	164,38	714,28	0,812500	0,8521	0,8259	0,8326	0,8477
40	1999	190,73	724,62	0,833333	0,8588	0,8312	0,8410	0,8556
41	2000	1155,88	737,44	0,854167	0,8668	0,8375	0,8510	0,8649
42	2001	862,66	758,93	0,875000	0,8791	0,8475	0,8667	0,8794
43	2002	915,78	787,8	0,895833	0,8941	0,8599	0,8859	0,8970
44	2003	724,62	862,66	0,916667	0,9252	0,8871	0,9260	0,9331
45	2004	787,8	915,78	0,937500	0,9417	0,9029	0,9470	0,9516
46	2005	758,93	943	0,958333	0,9488	0,9100	0,9557	0,9593
47	2006	531,33	1155,88	0,979167	0,9815	0,9490	0,9912	0,9906

TablaN°65: Frecuencias observadas y teóricas acumuladas, estación Río Teno bajo quebrada Infiernillo

N	AÑOS	Q Max	< a >	Fn=Weibull	Gumbel	LogNormal	Goodrich	Pearson III
1	1985	78,8	29,46	0,050	0,0070	0,0041	0,0352	0,0393
2	1986	94,2	58,9	0,100	0,0420	0,0647	0,0870	0,0870
3	1990	29,46	78,8	0,150	0,0961	0,1488	0,1381	0,1362
4	1991	358,84	94,2	0,200	0,1568	0,2266	0,1865	0,1844
5	1992	146,84	98,88	0,250	0,1780	0,2511	0,2026	0,2008
6	1993	194,3	120,74	0,300	0,2901	0,3651	0,2856	0,2867
7	1994	146,04	121	0,350	0,2915	0,3664	0,2867	0,2878
8	1995	211,12	146,04	0,400	0,4307	0,4863	0,3938	0,4006
9	1996	58,9	146,84	0,450	0,4351	0,4898	0,3974	0,4043
10	1997	121	187,47	0,500	0,6385	0,6455	0,5798	0,5955
11	1998	120,74	194,3	0,550	0,6674	0,6670	0,6095	0,6260
12	1999	98,88	204,26	0,600	0,7064	0,6961	0,6514	0,6687
13	2000	246,18	211,12	0,650	0,7312	0,7147	0,6793	0,6968
14	2001	238,48	218,8	0,700	0,7568	0,7341	0,7092	0,7266
15	2002	218,8	238,48	0,750	0,8134	0,7781	0,7793	0,7951
16	2003	239,33	239,33	0,800	0,8156	0,7799	0,7820	0,7978
17	2004	288	246,18	0,850	0,8322	0,7933	0,8038	0,8186
18	2005	204,26	288	0,900	0,9073	0,8586	0,9066	0,9141
19	2006	187,47	358,84	0,950	0,9674	0,9240	0,9829	0,9824

TablaN°66: Frecuencias observadas y teóricas acumuladas, estación Río Purapel en Sauzal

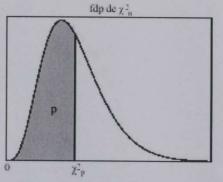
n	AÑOS	Q Max	Orden	Frec. Obs.	Gumbel	LogNormal	Goodrich	Pearson III
			decreciente	acumulada				
1	1999	0,18	0,18	0,125	0,0309	0,0142	0,0890	0,0752
2	2000	246,5	42,4	0,25	0,1059	0,4383	0,1488	0,1441
3	2001	293,86	125,9	0,375	0,3886	0,5989	0,3341	0,3639
4	2002	203,25	203,25	0,5	0,6543	0,6660	0,5670	0,6105
5	2003	42,4	246,5	0,625	0,7627	0,6917	0,6990	0,7324
6	2004	125,9	293,86	0,75	0,8471	0,7144	0,8229	0,8371
7	2005	321,15	321,15	0,875	0,8825	0,7255	0,8790	0,8824

PRUEBA DE KOLMOGOROV-SMIRNOV $(n = {\rm Tama\~no}~{\rm de~la~muestra})$

n	$\alpha = 0.2$	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.02$	$\alpha = 0.01$
1	0.900	0.950	0.975	0.990	0.995
2	0.684	0.776	0.842	0.900	0.929
3	0.565	0.636	0.708	0.785	0.829
4	0.493	0.565	0.624	0.689	0.734
5	0.447	0.509	0.563	0.627	0.669
6	0.410	0.468	0.519	0.577	0.617
7	0.381	0.436	0.483	0.538	0.576
8	0.359	0.410	0.454	0.507	0.542
9	0.339	0.387	0.430	0.480	0.513
10	0.323	0.369	0.409	0.457	0.486
11	0.308	0.352	0.391	0.437	0.468
12	0.296	0.338	0.375	0.419	0.449
13	0.285	0.325	0.361	0.404	0.432
14	0.275	0.314	0.349	0.390	0.418
15	0.266	0.304	0.338	0.377	0.404
16	0.258	0.295	0.327	0.366	0.392
17	0.250	0.286	0.318	0.355	0.381
18	0.244	0.279	0.309	0.346	0.371
19	0.237	0.271	0.301	0.337	0.361
20	0.232	0.265	0.294	0.329	0.352
21	0.226	0.259	0.287	0.321	0.344
22	0.221	0.253	0.281	0.314	0.337
23	0.216	0.247	0.275	0.307	0.330
24	0.212	0.242	0.269	0.301	0.323
25	0.208	0.238	0.264	0.295	0.317
26	0.204	0.233	0.259	0.290	0.311
.27	0.200	0.229	0.254	0.284	0.305
28	0.197	0.225	0.250	0.279	0.300
29	0.193	0.221	0.246	0.275	0.295
30	0.190	0.218	0.242	0.270	0.290
35	0.177	0.202	0.224	0.251	0.269
40	0.165	0.189	0.210	0.235	0.252
45	0.156	0.179	0.198	0.222	0.238
50	0.148	0.170	0.188	0.211	0.226
55	0.142	0.162	0.180	0.201	0.216
60	0.136	0.155	0.172	0.193	0.207
65	0.131	0.149	0.166	0.185	0.199
70	0.126	0.144	0.160	0.179	0.192
75	0.122	0.139	0.154	0.173	0.185
80	0.118	0.135	0.150	0.167	0.179
85	0.114	0.131	0.145	0.162	0.174
90	0.111	0.127	0.141	0.158	0.169
95	0.108	0.124	0.137	0.154	0.165
100	0.106	0.121	0.134	0.150	0.161
n > 100	$1.07/\sqrt{n}$	$1.22/\sqrt{n}$	$1.36/\sqrt{n}$	$1.52/\sqrt{n}$	$1.63/\sqrt{n}$

ANEXO 2.

Distribución Chi-cuadrado de Pearson


Tabla de la función de distribución:

$$P(\chi^2_{|n}{\le}\chi^2_{|p})=p$$

 $\chi^2_{\ p}$: valor tabulado

p: probabilidad acumulada

n: grados de libertad

n/p	0.005	0.01	0.025	0.05	0.1	0.50	0.90	0.95	0.975	0.99	0.995
1	0.00	0.00	0.00	0.00	0.02	0.45	2.71	3.84	5.02	6.63	7.88
2	0.01	0.02	0.05	0.10	0.21	1.39	4.61	5.99	7.38	9.21	10.60
3	0.07	0.11	0.22	0.35	0.58	2.37	6.25	7.81	9.35	11.34	12.84
4	0.21	0.30	0.48	0.71	1.06	3.36	7.78	9.49	11.14	13.28	14.86
5	0.41	0.55	0.83	1.15	1.61	4.35	9.24	11.07	12.83	15.09	16.75
6	0.68	0.87	1.24	1.64	2.20	5.35	10.64	12.59	14.45	16.81	18.55
7	0.99	1.24	1.69	2.17	2.83	6.35	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	7.34	13.36	15.51	17.53	20.09	21.95
9	1.73	2.09	2.70	3.33	4.17	8.34	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	9.34	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	10.34	17.28	19.68	21.92	24.72	26.76
12	3.07	3.57	4.40	5.23	6.30	11.34	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	12.34	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	13.34	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.26	7.26	8.55	14.34	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	15.34	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	16.34	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.86	17.34	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	11.65	18.34	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	19.34	28.41	31.41	34.17	37.57	40.00
21	8.03	8.90	10.28	11.59	13.24	20.34	29.62	32.67	35.48	38.93	41.40
22	8.64	9.54	10.98	12.34	14.04	21.34	30.81	33.92	36.78	40.29	42.80
23	9.26	10.20	11.69	13.09	14.85	22.34	32.01	35.17	38.08	41.64	44.18
24	9.89	10.86	12.40	13.85	15.66	23.34	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	24.34	34.38	37.65	40.65	44.31	46.93
26	11.16	12.20	13.84	15.38	17.29	25.34	35.56	38.89	41.92	45.64	48.29
27	11.81	12.88	14.57	16.15	18.11	26.34	36.74	40.11	43.19	46.96	49.64
28	12.46	13.56	15.31	16.93	18.94	27.34	37.92	41.34	44.46	48.28	50.99
29	13.12	14.26	16.05	17.71	19.77	28.34	39.09	42.56	45.72	49.59	52.34
30	13.79	14.95	16.79	18.49	20.60	29.34	40.26	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	29.05	39.34	51.81	55.76	59.34	63.69	66.77
60	35.53	37.48	40.48	43.19	46.46	59.33	74.40	79.08	83.30	88.38	91.95
120	83.85	86.92	91.57	95.70	100.6	119.33	140.2	146.5	152.2	158.9	163.6

ANEXO 3.

	VALORES DE LA FUNCION GAMMA										
	0	1	2	3	4	5	6	7	8	9	
1.0	1.000	0.994	0.989	0.984	0.978	0.974	0.969	0.964	0.960	0.955	
1.1	0.951	0.947	0.944	0.940	0.936	0.933	0.930	0.927	0.924	0.921	
1.2	0.918	0.916	0.913	0.911	0.909	0.906	0.904	0.903	0.901	0.899	
1.3	0.897	0.896	0.895	0.893	0.892	0.891	0.890	0.889	0.889	0.888	
1.4	0.887	0.887	0.886	0.886	0.886	0.886	0.886	0.886	0.886	0.886	
1.5	0.886	0.887	0.887	0.888	0.888	0.889	0.890	0.890	0.891	0.892	
1.6	0.894	0.895	0.896	0.897	0.899	0.900	0.902	0.903	0.905	0.907	
1.7	0.909	0.911	0.913	0.915	0.917	0.919	0.921	0.924	0.926	0.929	
1.8	0.931	0.934	0.937	0.940	0.943	0.946	0.949	0.952	0.955	0.958	
1.9	0.962	0.965	0.969	0.972	0.976	0.980	0.984	0.988	0.992	0.996	